失眠网,内容丰富有趣,生活中的好帮手!
失眠网 > Plant Cell︱苏黎士理工大学研究者揭示植物气孔开放调控新机制

Plant Cell︱苏黎士理工大学研究者揭示植物气孔开放调控新机制

时间:2020-10-08 21:11:01

相关推荐

Plant Cell︱苏黎士理工大学研究者揭示植物气孔开放调控新机制

点击上方“蓝字”,关注我们.

5月26日,苏黎士理工大学综合生物学研究所的Diana Santelia团队在Plant Cell在线发表了题为Guard Cell Starch Degradation Yields Glucose for Rapid Stomatal Opening in Arabidopsis的研究论文。文章揭示了光照通过膜离子运输和淀粉代谢调控保卫细胞开闭的分子机制

拟南芥保卫细胞中的淀粉在一天开始时被葡聚糖水解酶α-淀粉酶3(AMY3)和β-淀粉酶1(BAM1)迅速降解,以促进气孔开放。这一过程是通过质膜H+-ATPase下游的光敏素介导的蓝光信号来激活的。在气孔开放动力学的精细控制中,保卫细胞淀粉降解如何与光调控的膜运输过程相结合尚不清楚。

本文发现在amy3 bam1突变体保卫细胞质膜上的H+、K+和Cl-转运没有改变,表明淀粉降解产物不直接影响保卫细胞的离子转运能力。酶定量分析表明,在蓝光照射30min后,amy3 bam1保卫细胞的苹果酸水平与野生型相似,但糖的稳态发生了显着变化,几乎检测不到葡萄糖的含量。因此,在拟南芥保卫细胞中,葡萄糖而不是苹果酸是淀粉衍生的主要代谢物。进一步的研究表明,amy3 bam1突变体的淀粉降解受损会导致40min的开放时间常数增加。

因此,得出的结论是,黎明时快速的淀粉降解是维持细胞质糖库所必需的,而细胞质糖库显然是气孔快速打开所必需的。因此,亚细胞间代谢产物的转换和交换,能够通过膜离子运输来协调细胞的能量和代谢状态

红光对保卫细胞糖代谢及气孔动力学的影响

附:

Abstract

Starch in Arabidopsis guard cells is rapidly degraded at the start of the day by the glucan hydrolases α-amylase3 (AMY3) and β-amylase1 (BAM1) to promote stomatal opening. This process is activated via phototropin-mediated blue light signaling downstream of the plasma membrane H+-ATPase. It remains unknown how guard cell starch degradation integrates with light-regulated membrane transport processes in the fine control of stomatal opening kinetics. We report that H+, K+ and Cl- transport across the guard cell plasma membrane is unaltered in the amy3 bam1 mutant, suggesting that starch degradation products do not directly affect the capacitiy to transport ions. Enzymatic quantification revealed that after 30 min of blue light illumination, amy3bam1 guard cells had similar malate levels as the wild type, but had dramatically altered sugar homeostasis, with almost undetectable amounts of glucose. Thus, glucose, not malate, is the major starch-derived metabolite in Arabidopsis guard cells. We further show that impaired starch degradation in the amy3bam1 mutant resulted in an increase in the time constant for opening of 40 min. We conclude that rapid starch degradation at dawn is required to maintain the cytoplasmic sugar pool, clearly needed for fast stomatal opening. The conversion and exchange of metabolites between subcellular compartments therefore coordinates the energetic and metabolic status of the cell with membrane ion transport.

文章链接:/content/early//05/26/tpc.18.00802

或点击下方“阅读原文

推荐阅读:

Molecular plant┃热激胁迫下看“绝地大师”如何调控植物气孔的发育

Plant Physiology∣西双版纳热带植物园研究人员揭示植物激素茉莉酸调控叶片气孔的发育

番茄DELLA蛋白PROCERA在保卫细胞中促进气孔关闭

SHORTROOT介导的气孔密度增加对光合效率没有影响

PBJ | 西北农林科技大学康振生/刘杰课题组提出“糖饥饿”策略控制小麦条锈病

Nucleic Acids Res.┃中科院植物所迟伟课题组揭示叶绿体核糖体RNA甲基化修饰的机制和功能

Molecular plant︱糖酵解分流对卡尔文循环的补充可以作为蓝藻的回补反应

Molecular Plant︱中科院植物所王雷研究组揭示O-糖基化修饰调控生物钟周期的分子机制

PLOS Genetics∣福建农林大学关跃峰课题组揭示糖酵解途径调控花粉管极性新机制

The Plant Journal∣中科院储成才研究组发现糖信号通过影响ABA信号传导调节水稻穗发芽

Nature Communications∣中科院遗传发育所,植物所和安徽农业大学合作发现糖信号调控植物生长发育的新机制

西北农林与中国农科院揭示棉子糖可调节玉米与拟南芥的种子活力

如果觉得《Plant Cell︱苏黎士理工大学研究者揭示植物气孔开放调控新机制》对你有帮助,请点赞、收藏,并留下你的观点哦!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。