失眠网,内容丰富有趣,生活中的好帮手!
失眠网 > [极客工坊]十大滤波算法程序大全(Arduino精编无错版)

[极客工坊]十大滤波算法程序大全(Arduino精编无错版)

时间:2020-08-30 11:24:23

相关推荐

[极客工坊]十大滤波算法程序大全(Arduino精编无错版)

转载请注明出处:极客工坊 http://www.geek-/thread-7694-1-1.html

topic

1、限幅滤波法(又称程序判断滤波法)2、中位值滤波法3、算术平均滤波法5、中位值平均滤波法(又称防脉冲干扰平均滤波法)6、限幅平均滤波法7、一阶滞后滤波法8、加权递推平均滤波法9、消抖滤波法10、限幅消抖滤波法11.卡尔曼滤波

最近用Arduino做电子秤,为了解决数据的跳变研究了不少滤波算法。网上能找到大把的十大滤波算法帖子,每一篇都不太一样,都号称精编啊,除错啊什么的,可是放到板子里却没一个能正常跑起来的。于是决定自己整理一下这些程序,完美移植到Arduino中。

所以大家看到这个帖子的时候,不要怀疑我重复发帖。我的代码都是经过反复试验,复制到Arduino中就能开跑的成品代码,移植到自己的程序中非常方便。而且都仔细研究了各个算法,把错误都修正了的(别的程序连冒泡算法都是溢出的,不信自己找来细看看),所以也算个小原创吧,在别人基础上的原创。

转载请注明出处:极客工坊 http://www.geek-/thread-7694-1-1.html

By shenhaiyu -11-01

1、限幅滤波法(又称程序判断滤波法)

2、中位值滤波法

3、算术平均滤波法

4、递推平均滤波法(又称滑动平均滤波法)

5、中位值平均滤波法(又称防脉冲干扰平均滤波法)

6、限幅平均滤波法

7、一阶滞后滤波法

8、加权递推平均滤波法

9、消抖滤波法

10、限幅消抖滤波法

11、新增加 卡尔曼滤波(非扩展卡尔曼),代码在17楼(点击这里)感谢zhangzhe0617分享

程序默认对int类型数据进行滤波,如需要对其他类型进行滤波,只需要把程序中所有int替换成long、float或者double即可。

1、限幅滤波法(又称程序判断滤波法)

/*A、名称:限幅滤波法(又称程序判断滤波法)B、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效,如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值。C、优点:能有效克服因偶然因素引起的脉冲干扰。D、缺点:无法抑制那种周期性的干扰。平滑度差。E、整理:shenhaiyu -11-01*/int Filter_Value;int Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子Value = 300;}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Value = Filter_Value;// 最近一次有效采样的值,该变量为全局变量Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 限幅滤波法(又称程序判断滤波法)#define FILTER_A 1int Filter() {int NewValue;NewValue = Get_AD();if(((NewValue - Value) > FILTER_A) || ((Value - NewValue) > FILTER_A))return Value;elsereturn NewValue;}

2、中位值滤波法

/*A、名称:中位值滤波法B、方法:连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。C、优点:能有效克服因偶然因素引起的波动干扰;对温度、液位的变化缓慢的被测参数有良好的滤波效果。D、缺点:对流量、速度等快速变化的参数不宜。E、整理:shenhaiyu -11-01*/int Filter_Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 中位值滤波法#define FILTER_N 101int Filter() {int filter_buf[FILTER_N];int i, j;int filter_temp;for(i = 0; i < FILTER_N; i++) {filter_buf[i] = Get_AD();delay(1);}// 采样值从小到大排列(冒泡法)for(j = 0; j < FILTER_N - 1; j++) {for(i = 0; i < FILTER_N - 1 - j; i++) {if(filter_buf[i] > filter_buf[i + 1]) {filter_temp = filter_buf[i];filter_buf[i] = filter_buf[i + 1];filter_buf[i + 1] = filter_temp;}}}return filter_buf[(FILTER_N - 1) / 2];}

3、算术平均滤波法

/*A、名称:算术平均滤波法B、方法:连续取N个采样值进行算术平均运算:N值较大时:信号平滑度较高,但灵敏度较低;N值较小时:信号平滑度较低,但灵敏度较高;N值的选取:一般流量,N=12;压力:N=4。C、优点:适用于对一般具有随机干扰的信号进行滤波;这种信号的特点是有一个平均值,信号在某一数值范围附近上下波动。D、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用;比较浪费RAM。E、整理:shenhaiyu -11-01*/int Filter_Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 算术平均滤波法#define FILTER_N 12int Filter() {int i;int filter_sum = 0;for(i = 0; i < FILTER_N; i++) {filter_sum += Get_AD();delay(1);}return (int)(filter_sum / FILTER_N);}

4、递推平均滤波法(又称滑动平均滤波法)

/*A、名称:递推平均滤波法(又称滑动平均滤波法)B、方法:把连续取得的N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出原则),把队列中的N个数据进行算术平均运算,获得新的滤波结果。N值的选取:流量,N=12;压力,N=4;液面,N=4-12;温度,N=1-4。C、优点:对周期性干扰有良好的抑制作用,平滑度高;适用于高频振荡的系统。D、缺点:灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差;不易消除由于脉冲干扰所引起的采样值偏差;不适用于脉冲干扰比较严重的场合;比较浪费RAM。E、整理:shenhaiyu -11-01*/int Filter_Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 递推平均滤波法(又称滑动平均滤波法)#define FILTER_N 12int filter_buf[FILTER_N + 1];int Filter() {int i;int filter_sum = 0;filter_buf[FILTER_N] = Get_AD();for(i = 0; i < FILTER_N; i++) {filter_buf[i] = filter_buf[i + 1]; // 所有数据左移,低位仍掉filter_sum += filter_buf[i];}return (int)(filter_sum / FILTER_N);}

5、中位值平均滤波法(又称防脉冲干扰平均滤波法)

/*A、名称:中位值平均滤波法(又称防脉冲干扰平均滤波法)B、方法:采一组队列去掉最大值和最小值后取平均值,相当于“中位值滤波法”+“算术平均滤波法”。连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值。N值的选取:3-14。C、优点:融合了“中位值滤波法”+“算术平均滤波法”两种滤波法的优点。对于偶然出现的脉冲性干扰,可消除由其所引起的采样值偏差。对周期干扰有良好的抑制作用。平滑度高,适于高频振荡的系统。D、缺点:计算速度较慢,和算术平均滤波法一样。比较浪费RAM。E、整理:shenhaiyu -11-01*/int Filter_Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 中位值平均滤波法(又称防脉冲干扰平均滤波法)(算法1)#define FILTER_N 100int Filter() {int i, j;int filter_temp, filter_sum = 0;int filter_buf[FILTER_N];for(i = 0; i < FILTER_N; i++) {filter_buf[i] = Get_AD();delay(1);}// 采样值从小到大排列(冒泡法)for(j = 0; j < FILTER_N - 1; j++) {for(i = 0; i < FILTER_N - 1 - j; i++) {if(filter_buf[i] > filter_buf[i + 1]) {filter_temp = filter_buf[i];filter_buf[i] = filter_buf[i + 1];filter_buf[i + 1] = filter_temp;}}}// 去除最大最小极值后求平均for(i = 1; i < FILTER_N - 1; i++) filter_sum += filter_buf[i];return filter_sum / (FILTER_N - 2);}// 中位值平均滤波法(又称防脉冲干扰平均滤波法)(算法2)/*#define FILTER_N 100int Filter() {int i;int filter_sum = 0;int filter_max, filter_min;int filter_buf[FILTER_N];for(i = 0; i < FILTER_N; i++) {filter_buf[i] = Get_AD();delay(1);}filter_max = filter_buf[0];filter_min = filter_buf[0];filter_sum = filter_buf[0];for(i = FILTER_N - 1; i > 0; i--) {if(filter_buf[i] > filter_max)filter_max=filter_buf[i];else if(filter_buf[i] < filter_min)filter_min=filter_buf[i];filter_sum = filter_sum + filter_buf[i];filter_buf[i] = filter_buf[i - 1];}i = FILTER_N - 2;filter_sum = filter_sum - filter_max - filter_min + i / 2; // +i/2 的目的是为了四舍五入filter_sum = filter_sum / i;return filter_sum;}*/

6、限幅平均滤波法

/*A、名称:限幅平均滤波法B、方法:相当于“限幅滤波法”+“递推平均滤波法”;每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理。C、优点:融合了两种滤波法的优点;对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。D、缺点:比较浪费RAM。E、整理:shenhaiyu -11-01*/#define FILTER_N 12int Filter_Value;int filter_buf[FILTER_N];void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子filter_buf[FILTER_N - 2] = 300;}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 限幅平均滤波法#define FILTER_A 1int Filter() {int i;int filter_sum = 0;filter_buf[FILTER_N - 1] = Get_AD();if(((filter_buf[FILTER_N - 1] - filter_buf[FILTER_N - 2]) > FILTER_A) || ((filter_buf[FILTER_N - 2] - filter_buf[FILTER_N - 1]) > FILTER_A))filter_buf[FILTER_N - 1] = filter_buf[FILTER_N - 2];for(i = 0; i < FILTER_N - 1; i++) {filter_buf[i] = filter_buf[i + 1];filter_sum += filter_buf[i];}return (int)filter_sum / (FILTER_N - 1);}

7、一阶滞后滤波法

/*A、名称:一阶滞后滤波法B、方法:取a=0-1,本次滤波结果=(1-a)*本次采样值+a*上次滤波结果。C、优点:对周期性干扰具有良好的抑制作用;适用于波动频率较高的场合。D、缺点:相位滞后,灵敏度低;滞后程度取决于a值大小;不能消除滤波频率高于采样频率1/2的干扰信号。E、整理:shenhaiyu -11-01*/int Filter_Value;int Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子Value = 300;}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 一阶滞后滤波法#define FILTER_A 0.01int Filter() {int NewValue;NewValue = Get_AD();Value = (int)((float)NewValue * FILTER_A + (1.0 - FILTER_A) * (float)Value);return Value;}

8、加权递推平均滤波法

/*A、名称:加权递推平均滤波法B、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权;通常是,越接近现时刻的数据,权取得越大。给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。C、优点:适用于有较大纯滞后时间常数的对象,和采样周期较短的系统。D、缺点:对于纯滞后时间常数较小、采样周期较长、变化缓慢的信号;不能迅速反应系统当前所受干扰的严重程度,滤波效果差。E、整理:shenhaiyu -11-01*/int Filter_Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 加权递推平均滤波法#define FILTER_N 12int coe[FILTER_N] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; // 加权系数表int sum_coe = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12; // 加权系数和int filter_buf[FILTER_N + 1];int Filter() {int i;int filter_sum = 0;filter_buf[FILTER_N] = Get_AD();for(i = 0; i < FILTER_N; i++) {filter_buf[i] = filter_buf[i + 1]; // 所有数据左移,低位仍掉filter_sum += filter_buf[i] * coe[i];}filter_sum /= sum_coe;return filter_sum;}

9、消抖滤波法

/*A、名称:消抖滤波法B、方法:设置一个滤波计数器,将每次采样值与当前有效值比较:如果采样值=当前有效值,则计数器清零;如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出);如果计数器溢出,则将本次值替换当前有效值,并清计数器。C、优点:对于变化缓慢的被测参数有较好的滤波效果;可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动。D、缺点:对于快速变化的参数不宜;如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统。E、整理:shenhaiyu -11-01*/int Filter_Value;int Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子Value = 300;}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 消抖滤波法#define FILTER_N 12int i = 0;int Filter() {int new_value;new_value = Get_AD();if(Value != new_value) {i++;if(i > FILTER_N) {i = 0;Value = new_value;}}elsei = 0;return Value;}

10、限幅消抖滤波法

/*A、名称:限幅消抖滤波法B、方法:相当于“限幅滤波法”+“消抖滤波法”;先限幅,后消抖。C、优点:继承了“限幅”和“消抖”的优点;改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统。D、缺点:对于快速变化的参数不宜。E、整理:shenhaiyu -11-01*/int Filter_Value;int Value;void setup() {Serial.begin(9600); // 初始化串口通信randomSeed(analogRead(0)); // 产生随机种子Value = 300;}void loop() {Filter_Value = Filter(); // 获得滤波器输出值Serial.println(Filter_Value); // 串口输出delay(50);}// 用于随机产生一个300左右的当前值int Get_AD() {return random(295, 305);}// 限幅消抖滤波法#define FILTER_A 1#define FILTER_N 5int i = 0;int Filter() {int NewValue;int new_value;NewValue = Get_AD();if(((NewValue - Value) > FILTER_A) || ((Value - NewValue) > FILTER_A))new_value = Value;elsenew_value = NewValue;if(Value != new_value) {i++;if(i > FILTER_N) {i = 0;Value = new_value;}}elsei = 0;return Value;}

11.卡尔曼滤波

建议编辑一下这个帖子作为滤波专用的,这样大家查起来也方便。下面是卡尔曼滤波,不是扩展的,但是输出平稳的俯仰和滚转应该够了(凑乎用吧我也不是专业写代码的,欢迎大家拍)

#include <Wire.h> // I2C library, gyroscope// Accelerometer ADXL345#define ACC (0x53) //ADXL345 ACC address#define A_TO_READ (6) //num of bytes we are going to read each time (two bytes for each axis)// Gyroscope ITG3200#define GYRO 0x68 // gyro address, binary = 11101000 when AD0 is connected to Vcc (see schematics of your breakout board)#define G_SMPLRT_DIV 0x15#define G_DLPF_FS 0x16#define G_INT_CFG 0x17#define G_PWR_MGM 0x3E#define G_TO_READ 8 // 2 bytes for each axis x, y, z// offsets are chip specific.int a_offx = 0;int a_offy = 0;int a_offz = 0;int g_offx = 0;int g_offy = 0;int g_offz = 0;char str[512];void initAcc() {//Turning on the ADXL345writeTo(ACC, 0x2D, 0);writeTo(ACC, 0x2D, 16);writeTo(ACC, 0x2D, 8);//by default the device is in +-2g range reading}void getAccelerometerData(int* result) {int regAddress = 0x32; //first axis-acceleration-data register on the ADXL345byte buff[A_TO_READ];readFrom(ACC, regAddress, A_TO_READ, buff); //read the acceleration data from the ADXL345//each axis reading comes in 10 bit resolution, ie 2 bytes. Least Significat Byte first!!//thus we are converting both bytes in to one intresult[0] = (((int)buff[1]) << 8) | buff[0] + a_offx;result[1] = (((int)buff[3]) << 8) | buff[2] + a_offy;result[2] = (((int)buff[5]) << 8) | buff[4] + a_offz;}//initializes the gyroscopevoid initGyro(){/*****************************************ITG 3200power management set to:clock select = internal oscillatorno reset, no sleep modeno standby modesample rate to = 125Hzparameter to +/- 2000 degrees/seclow pass filter = 5Hzno interrupt******************************************/writeTo(GYRO, G_PWR_MGM, 0x00);writeTo(GYRO, G_SMPLRT_DIV, 0x07); // EB, 50, 80, 7F, DE, 23, 20, FFwriteTo(GYRO, G_DLPF_FS, 0x1E); // +/- 2000 dgrs/sec, 1KHz, 1E, 19writeTo(GYRO, G_INT_CFG, 0x00);}void getGyroscopeData(int * result){/**************************************Gyro ITG-3200 I2Cregisters:temp MSB = 1B, temp LSB = 1Cx axis MSB = 1D, x axis LSB = 1Ey axis MSB = 1F, y axis LSB = 20z axis MSB = 21, z axis LSB = 22*************************************/int regAddress = 0x1B;int temp, x, y, z;byte buff[G_TO_READ];readFrom(GYRO, regAddress, G_TO_READ, buff); //read the gyro data from the ITG3200result[0] = ((buff[2] << 8) | buff[3]) + g_offx;result[1] = ((buff[4] << 8) | buff[5]) + g_offy;result[2] = ((buff[6] << 8) | buff[7]) + g_offz;result[3] = (buff[0] << 8) | buff[1]; // temperature}float xz = 0, yx = 0, yz = 0;float p_xz = 1, p_yx = 1, p_yz = 1;float q_xz = 0.0025, q_yx = 0.0025, q_yz = 0.0025;float k_xz = 0, k_yx = 0, k_yz = 0;float r_xz = 0.25, r_yx = 0.25, r_yz = 0.25;//int acc_temp[3];//float acc[3];int acc[3];int gyro[4];float Axz;float Ayx;float Ayz;float t = 0.025;void setup(){Serial.begin(9600);Wire.begin();initAcc();initGyro();}//unsigned long timer = 0;//float o;void loop(){getAccelerometerData(acc);getGyroscopeData(gyro);//timer = millis();sprintf(str, "%d,%d,%d,%d,%d,%d", acc[0], acc[1], acc[2], gyro[0], gyro[1], gyro[2]);//acc[0]=acc[0];//acc[2]=acc[2];//acc[1]=acc[1];//r=sqrt(acc[0]*acc[0]+acc[1]*acc[1]+acc[2]*acc[2]);gyro[0] = gyro[0] / 14.375;gyro[1] = gyro[1] / (-14.375);gyro[2] = gyro[2] / 14.375;Axz = (atan2(acc[0], acc[2])) * 180 / PI;Ayx = (atan2(acc[0], acc[1])) * 180 / PI;/*if((acc[0]!=0)&&(acc[1]!=0)){Ayx=(atan2(acc[0],acc[1]))*180/PI;}else{Ayx=t*gyro[2];}*/Ayz = (atan2(acc[1], acc[2])) * 180 / PI;//kalman filtercalculate_xz();calculate_yx();calculate_yz();//sprintf(str, "%d,%d,%d", xz_1, xy_1, x_1);//Serial.print(xz);Serial.print(",");//Serial.print(yx);Serial.print(",");//Serial.print(yz);Serial.print(",");//sprintf(str, "%d,%d,%d,%d,%d,%d", acc[0],acc[1],acc[2],gyro[0],gyro[1],gyro[2]);//sprintf(str, "%d,%d,%d",gyro[0],gyro[1],gyro[2]);Serial.print(Axz); Serial.print(",");//Serial.print(Ayx);Serial.print(",");//Serial.print(Ayz);Serial.print(",");//Serial.print(str);//o=gyro[2];//w=acc[2];//Serial.print(o);Serial.print(",");//Serial.print(w);Serial.print(",");Serial.print("\n");//delay(50);}void calculate_xz(){xz = xz + t * gyro[1];p_xz = p_xz + q_xz;k_xz = p_xz / (p_xz + r_xz);xz = xz + k_xz * (Axz - xz);p_xz = (1 - k_xz) * p_xz;}void calculate_yx(){yx = yx + t * gyro[2];p_yx = p_yx + q_yx;k_yx = p_yx / (p_yx + r_yx);yx = yx + k_yx * (Ayx - yx);p_yx = (1 - k_yx) * p_yx;}void calculate_yz(){yz = yz + t * gyro[0];p_yz = p_yz + q_yz;k_yz = p_yz / (p_yz + r_yz);yz = yz + k_yz * (Ayz - yz);p_yz = (1 - k_yz) * p_yz;}//---------------- Functions//Writes val to address register on ACCvoid writeTo(int DEVICE, byte address, byte val) {Wire.beginTransmission(DEVICE); //start transmission to ACCWire.write(address); // send register addressWire.write(val); // send value to writeWire.endTransmission(); //end transmission}//reads num bytes starting from address register on ACC in to buff arrayvoid readFrom(int DEVICE, byte address, int num, byte buff[]) {Wire.beginTransmission(DEVICE); //start transmission to ACCWire.write(address); //sends address to read fromWire.endTransmission(); //end transmissionWire.beginTransmission(DEVICE); //start transmission to ACCWire.requestFrom(DEVICE, num); // request 6 bytes from ACCint i = 0;while (Wire.available()) //ACC may send less than requested (abnormal){buff[i] = Wire.read(); // receive a bytei++;}Wire.endTransmission(); //end transmission}

如果觉得《[极客工坊]十大滤波算法程序大全(Arduino精编无错版)》对你有帮助,请点赞、收藏,并留下你的观点哦!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。