失眠网,内容丰富有趣,生活中的好帮手!
失眠网 > 数字信号处理基础----拉普拉斯变换与Z变换

数字信号处理基础----拉普拉斯变换与Z变换

时间:2023-03-14 12:14:38

相关推荐

数字信号处理基础----拉普拉斯变换与Z变换

1. 拉普拉斯变换

在前面学习非周期信号的傅里叶变换的时候,对一些常见的信号进行了傅里叶变换。其实,不是任何信号都能使用傅里叶变换进行展开,能够使用傅里叶变换的信号需要满足一定的条件才可以。

信号能够使用傅里叶变换需要满足狄利赫里条件

对于一些不收敛的函数,是没有办法对其进行傅里叶变换的,这个时候,就需要对傅里叶变换进行升级。也就是拉普拉斯变换。

拉普拉斯变换的思路就是将不收敛的函数将其掰弯,让相乘之后的函数能够收敛。对原始的信号乘上一个复指数信号。

现在再对相乘之后的信号进行傅里叶变换。

拉普拉斯变换的物理意义

傅里叶变换可以看作是一个旋转矢量在单位圆上旋转。

而对于拉普拉斯变换,对其在前面乘以了一个复指数,也就是相当于改变了旋转矢量的幅度。也就是在旋转矢量不在是在单位圆上进行旋转。

2 Z变换

对于离散的傅里叶变换DTFT,将离散的信号分解到一些列离散的复指数信后时。但是不是所有信号都能进行DTFT,此时需要采取跟拉普拉斯变换相同的操作,对其乘一个量,让其能够衰减。

若是能够正常进行DTFT的变换的信号,其可以看作是一系列在单位圆上旋转的离散的旋转矢量。

对于不收敛的信号,也需要对其乘上一个变量让其收敛,这也就相当于改变了旋转矢量的幅度。

因此DTFT就可以变成Z变换了。

Z 变换的收敛域

对于一个连续的信号,其旋转矢量是一个以时间t为变量的。而对于离散的旋转矢量,它只有离散的取值,它的角速度其实是一个归一化的角速度,也就是信号的原始频率相较于采样频率的归一化。

Z变换的收敛域就相当于将函数的收敛的圆的大小进行了改变。

3. Z变换在数字信号处理当中的作用

3.1 Z 变换的性质

延时特性

在时域中的延时,相当于在Z域中乘以一个Z的负几次方。

3.2 系统的表示

对于一个离散的系统,可以有三种表示方法:

时域中用卷积的方式来表:

通过将输入的信号与系统的单位冲击响应进行卷积就能够表示输出系统,这个系统的单位冲击响应就能来表示系统。频域中用系统的傅里叶变换来表示Z域中用Z变换来表示一个系统

参考:

深入浅出数字信号处理

如果觉得《数字信号处理基础----拉普拉斯变换与Z变换》对你有帮助,请点赞、收藏,并留下你的观点哦!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。