失眠网,内容丰富有趣,生活中的好帮手!
失眠网 > 动手学习深度学习 07:现代卷积神经网络(AlexNet VGG NiN GoogleNet 批量归一化 ResNet DenseNet)

动手学习深度学习 07:现代卷积神经网络(AlexNet VGG NiN GoogleNet 批量归一化 ResNet DenseNet)

时间:2019-05-15 21:16:45

相关推荐

动手学习深度学习 07:现代卷积神经网络(AlexNet VGG NiN GoogleNet 批量归一化 ResNet DenseNet)

文章目录

01 深度卷积神经网络-AlexNet1、学习表征1.1、缺少的成分:数据1.2、缺少的成分:硬件 2、AlexNet2.1、模型设计2.2、激活函数2.3、容量控制和预处理2.4、读取数据集2.5、训练 02 使用块的网络-VGG1、VGG块2、VGG网络3、训练模型4、代码汇总5、小结 03 网络中的网络-NiN1、NiN块1.1、概述1.2、实现 2、NiN模型3、训练模型4、小结 04 含并行连结的网络-GoogLeNet1、Inception块2、GoogLeNet模型3、代码实现4、总结 05 批量归一化1、训练深层网络2、批量规范化层3、代码实现4、争议5、小结 06 残差网络-ResNet1、核心思想1.1、函数类1.2、残差块 2、ResNet模型2.1 整合代码 3、总结4、ResNet为什么能训练出1000层的模型 07 稠密连接网络-DenseNet08 竞赛:图像分类

01 深度卷积神经网络-AlexNet

事实上,在上世纪90年代初到之间的大部分时间里,神经网络往往被其他机器学习方法超越,如支持向量机(support vector machines)。

经典机器学习的流水线看起来更像下面这样:

获取一个有趣的数据集。在早期,收集这些数据集需要昂贵的传感器(在当时最先进的图像也就100万像素)。根据光学、几何学、其他知识以及偶然的发现,手工对特征数据集进行预处理。通过标准的特征提取算法,如SIFT(尺度不变特征变换) [Lowe, ]和SURF(加速鲁棒特征) [Bay et al., ]或其他手动调整的流水线来输入数据。将提取的特征送入最喜欢的分类器中(例如线性模型或其它核方法),以训练分类器。

1、学习表征

过去,数据和硬件方面的发展:

深度卷积神经网络的突破出现在。突破可归因于两个关键因素。

1.1、缺少的成分:数据

限于早期计算机有限的存储和90年代有限的研究预算,大部分研究只基于小的公开数据集。

这一状况在前后兴起的大数据浪潮中得到改善。,ImageNet数据集发布,并发起ImageNet挑战赛:要求研究人员从100万个样本中训练模型,以区分1000个不同类别的对象。ImageNet数据集由斯坦福教授李飞飞小组的研究人员开发,利用谷歌图像搜索(Google Image Search)对每一类图像进行预筛选,并利用亚马逊众包(Amazon Mechanical Turk)来标注每张图片的相关类别。

1.2、缺少的成分:硬件

深度学习对计算资源要求很高,训练可能需要数百个迭代轮数,每次迭代都需要通过代价高昂的许多线性代数层传递数据。这也是为什么在20世纪90年代至21世纪初,优化凸目标的简单算法是研究人员的首选。然而,用GPU训练神经网络改变了这一格局。图形处理器(Graphics Processing Unit,GPU)**早年用来加速图形处理,使电脑游戏玩家受益。GPU可优化高吞吐量的4×4矩阵和向量乘法,从而服务于基本的图形任务。幸运的是,这些数学运算与卷积层的计算惊人地相似。由此,英伟达(NVIDIA)和ATI已经开始为通用计算操作优化gpu,甚至把它们作为通用GPU(general-purpose GPUs,GPGPU)来销售。

那么GPU比CPU强在哪里呢?

首先,我们深度理解一下中央处理器(Central Processing Unit,CPU)的核心。 CPU的每个核心都拥有高时钟频率的运行能力,和高达数MB的三级缓存(L3Cache)。 它们非常适合执行各种指令,具有分支预测器、深层流水线和其他使CPU能够运行各种程序的功能。 然而,这种明显的优势也是它的致命弱点:通用核心的制造成本非常高。 它们需要大量的芯片面积、复杂的支持结构(内存接口、内核之间的缓存逻辑、高速互连等等),而且它们在任何单个任务上的性能都相对较差。 现代笔记本电脑最多有4核,即使是高端服务器也很少超过64核,因为它们的性价比不高。

相比于CPU,GPU由100∼1000个小的处理单元组成(NVIDIA、ATI、ARM和其他芯片供应商之间的细节稍有不同),通常被分成更大的组(NVIDIA称之为warps)。 虽然每个GPU核心都相对较弱,有时甚至以低于1GHz的时钟频率运行,但庞大的核心数量使GPU比CPU快几个数量级。 例如,NVIDIA最近一代的Ampere GPU架构为每个芯片提供了高达312 TFlops的浮点性能,而CPU的浮点性能到目前为止还没有超过1 TFlops。 之所以有如此大的差距**,原因其实很简单:(功耗、内核、内存带宽)**

首先,功耗往往会随时钟频率呈二次方增长。 对于一个CPU核心,假设它的运行速度比GPU快4倍,你可以使用16个GPU内核取代,那么GPU的综合性能就是CPU的16×1/4=4倍。其次,GPU内核要简单得多,这使得它们更节能。此外,深度学习中的许多操作需要相对较高的内存带宽,而GPU拥有10倍于CPU的带宽。

回到的重大突破,当Alex Krizhevsky和Ilya Sutskever实现了可以在GPU硬件上运行的深度卷积神经网络时,一个重大突破出现了。他们意识到卷积神经网络中的计算瓶颈:卷积和矩阵乘法,都是可以在硬件上并行化的操作。 于是,他们使用两个显存为3GB的NVIDIA GTX580 GPU实现了快速卷积运算。他们的创新cuda-convnet几年来它一直是行业标准,并推动了深度学习热潮。

2、AlexNet

AlexNet横空出世。它首次证明了学习到的特征可以超越手工设计的特征。它一举打破了计算机视觉研究的现状。 AlexNet使用了8层卷积神经网络,并以很大的优势赢得了ImageNet图像识别挑战赛。

2.1、模型设计

对比AlexNet与LeNet:

复杂度对比

FLOPS:注意全大写,是floating point operations per second的缩写,意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。FLOPs:注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。

2.2、激活函数

此外,AlexNet将sigmoid激活函数改为更简单的ReLU激活函数。

2.3、容量控制和预处理

AlexNet通过暂退法控制全连接层的模型复杂度,而LeNet只使用了权重衰减。

AlexNet在训练时增加了大量的图像增强数据,如翻转、裁切和变色。 这使得模型更健壮,更大的样本量有效地减少了过拟合。

AlexNet实现:

import torchfrom torch import nnfrom d2l import torch as d2lnet = nn.Sequential(# 这里,我们使用一个11*11的更大窗口来捕捉对象。# 同时,步幅为4,以减少输出的高度和宽度。# 另外,输出通道的数目远大于LeNetnn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),# 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),# 使用三个连续的卷积层和较小的卷积窗口。# 除了最后的卷积层,输出通道的数量进一步增加。# 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(),# 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合nn.Linear(6400, 4096), nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(4096, 4096), nn.ReLU(),nn.Dropout(p=0.5),# 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000nn.Linear(4096, 10))

我们构造一个高度和宽度都为224的单通道数据,来观察每一层输出的形状。 它与 图7.1.2中的AlexNet架构相匹配。

X = torch.randn(1, 1, 224, 224)for layer in net:X=layer(X)print(layer.__class__.__name__,'output shape:\t',X.shape)

结果展示:

Conv2d output shape: torch.Size([1, 96, 54, 54])ReLU output shape: torch.Size([1, 96, 54, 54])MaxPool2d output shape: torch.Size([1, 96, 26, 26])Conv2d output shape: torch.Size([1, 256, 26, 26])ReLU output shape: torch.Size([1, 256, 26, 26])MaxPool2d output shape: torch.Size([1, 256, 12, 12])Conv2d output shape: torch.Size([1, 384, 12, 12])ReLU output shape: torch.Size([1, 384, 12, 12])Conv2d output shape: torch.Size([1, 384, 12, 12])ReLU output shape: torch.Size([1, 384, 12, 12])Conv2d output shape: torch.Size([1, 256, 12, 12])ReLU output shape: torch.Size([1, 256, 12, 12])MaxPool2d output shape: torch.Size([1, 256, 5, 5])Flatten output shape: torch.Size([1, 6400])Linear output shape: torch.Size([1, 4096])ReLU output shape: torch.Size([1, 4096])Dropout output shape: torch.Size([1, 4096])Linear output shape: torch.Size([1, 4096])ReLU output shape: torch.Size([1, 4096])Dropout output shape: torch.Size([1, 4096])Linear output shape: torch.Size([1, 10])

2.4、读取数据集

ImageNet数据集较大,这里我们Fashion-MNIST数据集。

将AlexNet直接应用于Fashion-MNIST的一个问题是,Fashion-MNIST图像的分辨率(28×28像素)低于ImageNet图像。 为了解决这个问题,我们将它们增加到224×224(通常来讲这不是一个明智的做法,但我们在这里这样做是为了有效使用AlexNet架构)。 我们使用d2l.load_data_fashion_mnist函数中的resize参数执行此调整。

batch_size = 128train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

2.5、训练

lr, num_epochs = 0.01, 10d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

总结:

AlexNet是更大更深的LeNet,10x参数个数,260x计算复杂度新引入丢弃法、ReLU、最大池化层和数据增强ImageNet冠军,标志新一轮神经网络热潮的开始

02 使用块的网络-VGG

虽然AlexNet证明深层神经网络卓有成效,但它没有提供一个通用的模板来指导后续的研究人员设计新的网络。

1、VGG块

首先先直观的了解VGG:

LeNet -> AlexNet -> VGG

经典卷积神经网络的基本组成部分是下面的这个序列:

带填充以保持分辨率的卷积层;非线性激活函数,如ReLU;汇聚层,如最大汇聚层。

而一个VGG块与之类似,由一系列卷积层组成,后面再加上用于空间下采样的最大汇聚层。

在最初的VGG论文中 [Simonyan & Zisserman, ],作者使用了带有3×3卷积核、填充为1(保持高度和宽度)的卷积层,和带有2×2汇聚窗口、步幅为2(每个块后的分辨率减半)的最大汇聚层。在下面的代码中,我们定义了一个名为vgg_block的函数来实现一个VGG块。

import torchfrom torch import nnfrom d2l import torch as d2l# 定义vgg_block实现一个VGG块:该函数有三个参数,分别对应于卷积层的数量num_convs、输入通道的数量in_channels 和输出通道的数量out_channels.def vgg_block(num_convs, in_channels, out_channels):layers = []for _ in range(num_convs):layers.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))layers.append(nn.ReLU())in_channels = out_channelslayers.append(nn.MaxPool2d(kernel_size=2,stride=2))return nn.Sequential(*layers)

总结:

VGG使用可重复使用的卷积块来构建深度卷积神经网络不同的卷积块个数和超参数可以得到不同复杂度的变种VGG-11使用可复用的卷积块构造网络。不同的VGG模型可通过每个块中卷积层数量和输出通道数量的差异来定义。块的使用导致网络定义的非常简洁。使用块可以有效地设计复杂的网络。在VGG论文中,Simonyan和Ziserman尝试了各种架构。特别是他们发现深层且窄的卷积(即3×3)比较浅层且宽的卷积更有效。

2、VGG网络

VGG神经网络连接 图7.2.1的几个VGG块(在vgg_block函数中定义)。其中有超参数变量conv_arch。该变量指定了每个VGG块里卷积层个数和输出通道数。全连接模块则与AlexNet中的相同。

原始VGG网络有5个卷积块,其中前两个块各有一个卷积层,后三个块各包含两个卷积层。 第一个模块有64个输出通道,每个后续模块将输出通道数量翻倍,直到该数字达到512。由于该网络使用8个卷积层和3个全连接层,因此它通常被称为VGG-11。

conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

下面的代码实现了VGG-11。可以通过在conv_arch上执行for循环来简单实现。

def vgg(conv_arch):conv_blks = []in_channels = 1# 卷积层部分for (num_convs, out_channels) in conv_arch:conv_blks.append(vgg_block(num_convs, in_channels, out_channels))in_channels = out_channelsreturn nn.Sequential(*conv_blks, nn.Flatten(),# 全连接层部分nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 10))net = vgg(conv_arch)

构建一个单通道数据样本,以观察每个层输出的形状。

X = torch.randn(size=(1, 1, 224, 224))for blk in net:X = blk(X)print(blk.__class__.__name__,'output shape:\t',X.shape)

Sequential output shape: torch.Size([1, 64, 112, 112])Sequential output shape: torch.Size([1, 128, 56, 56])Sequential output shape: torch.Size([1, 256, 28, 28])Sequential output shape: torch.Size([1, 512, 14, 14])Sequential output shape: torch.Size([1, 512, 7, 7])Flatten output shape: torch.Size([1, 25088])Linear output shape: torch.Size([1, 4096])ReLU output shape: torch.Size([1, 4096])Dropout output shape: torch.Size([1, 4096])Linear output shape: torch.Size([1, 4096])ReLU output shape: torch.Size([1, 4096])Dropout output shape: torch.Size([1, 4096])Linear output shape: torch.Size([1, 10])

我们在每个块的高度和宽度减半,最终高度和宽度都为7。最后再展平表示,送入全连接层处理。

3、训练模型

由于VGG-11比AlexNet计算量更大,因此我们构建了一个通道数较少的网络

ratio = 4small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]net = vgg(small_conv_arch)

除了使用略高的学习率外,模型训练过程与 7.1节中的AlexNet类似。

lr, num_epochs, batch_size = 0.05, 10, 128train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

4、代码汇总

import torchfrom torch import nnfrom d2l import torch as d2l# 实现一个VGG块def vgg_block(num_convs, in_channels, out_channels): # 卷积层的数量num_convs、输入通道的数量in_channels、输出通道的数量out_channels.layers = []for _ in range(num_convs):layers.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))layers.append(nn.ReLU())in_channels = out_channelslayers.append(nn.MaxPool2d(kernel_size=2,stride=2))return nn.Sequential(*layers)# 对应原始VGG网络有5个卷积块conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512)) # (卷积层的数量,输出通道的数量)# 输入通道数去哪了?第一层中我们给个初始的输入通道数,之后几层的输入通道数都等于上一层的输出通道数# 代码实现VGG-11def vgg(conv_arch):conv_blks = []in_channels = 1# 卷积层部分for (num_convs, out_channels) in conv_arch:conv_blks.append(vgg_block(num_convs, in_channels, out_channels))in_channels = out_channelsreturn nn.Sequential(*conv_blks, nn.Flatten(),# 全连接层部分nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 10))net = vgg(conv_arch)# # 构建一个数据样本,以观察每个层输出的形状。# X = torch.randn(size=(1, 1, 224, 224))# for blk in net:#X = blk(X)#print(blk.__class__.__name__,'output shape:\t',X.shape)# 由于VGG-11比AlexNet计算量更大,因此我们构建了一个通道数较少的网络,不用之前定义的net:net = vgg(conv_arch)ratio = 4small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]net = vgg(small_conv_arch)lr, num_epochs, batch_size = 0.05, 10, 128# 数据准备train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)# 开始训练d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

5、小结

VGG-11使用可复用的卷积块构造网络。不同的VGG模型可通过每个块中卷积层数量和输出通道数量的差异来定义。块的使用导致网络定义的非常简洁。使用块可以有效地设计复杂的网络。在VGG论文中,Simonyan和Ziserman尝试了各种架构。特别是他们发现深层且窄的卷积(即3×3)比较浅层且宽的卷积更有效。

03 网络中的网络-NiN

LeNet、AlexNet和VGG都有一个共同的设计模式:通过一系列的卷积层与汇聚层来提取空间结构特征,然后通过全连接层对特征的表征进行处理。AlexNet和VGG对LeNet的改进主要在于如何扩大和加深这两个模块。或者,可以想象在这个过程的早期使用全连接层。然而,如果使用了全连接层,可能会完全放弃表征的空间结构。网络中的网络(NiN)提供了一个非常简单的解决方案:在每个像素的通道上分别使用多层感知机

1、NiN块

1.1、概述

AlexNet和VGG对LeNet最后都采用了全连接层,会导致全连接层参数太大了,很容易出现过拟合扽等问题。

为了解决这一问题,我们引入NiN。NiN的核心在于NiN块

了解完NiN的核心思想,我们看一下NiN架构:

总结:

NiN块使用卷积层加两个1*1卷积层 后者对每个像素增加了非线性性 NiN使用全局平均池化层来替代VGG和AlexNet中的全连接层 不容易过拟合,更少的参数个数

1.2、实现

import torchfrom torch import nnfrom d2l import torch as d2ldef nin_block(in_channels, out_channels, kernel_size, strides, padding):return nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())

2、NiN模型

NiN使用窗口形状为11×11、5×5和3×3的卷积层,输出通道数量与AlexNet中的相同。 每个NiN块后有一个最大汇聚层,汇聚窗口形状为3×3,步幅为2。

NiN和AlexNet之间的一个显著区别是NiN完全取消了全连接层。 相反,NiN使用一个NiN块,其输出通道数等于标签类别的数量。最后放一个全局平均汇聚层(global average pooling layer),生成一个对数几率 (logits)。

NiN设计的一个优点是,它显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模型的时间。

net = nn.Sequential(nin_block(1, 96, kernel_size=11, strides=4, padding=0),nn.MaxPool2d(3, stride=2),nin_block(96, 256, kernel_size=5, strides=1, padding=2),nn.MaxPool2d(3, stride=2),nin_block(256, 384, kernel_size=3, strides=1, padding=1),nn.MaxPool2d(3, stride=2),nn.Dropout(0.5),# 标签类别数是10nin_block(384, 10, kernel_size=3, strides=1, padding=1),# 全局的平均池化层nn.AdaptiveAvgPool2d((1, 1)),# 将四维的输出转成二维的输出,其形状为(批量大小,10)nn.Flatten())

我们创建一个数据样本来查看每个块的输出形状。

X = torch.rand(size=(1, 1, 224, 224))for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t', X.shape)

Sequential output shape:torch.Size([1, 96, 54, 54])MaxPool2d output shape:torch.Size([1, 96, 26, 26])Sequential output shape:torch.Size([1, 256, 26, 26])MaxPool2d output shape:torch.Size([1, 256, 12, 12])Sequential output shape:torch.Size([1, 384, 12, 12])MaxPool2d output shape:torch.Size([1, 384, 5, 5])Dropout output shape: torch.Size([1, 384, 5, 5])Sequential output shape:torch.Size([1, 10, 5, 5])AdaptiveAvgPool2d output shape:torch.Size([1, 10, 1, 1])Flatten output shape: torch.Size([1, 10])

3、训练模型

lr, num_epochs, batch_size = 0.1, 10, 128train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

4、小结

NiN使用由一个卷积层和多个1×1卷积层组成的块。该块可以在卷积神经网络中使用,以允许更多的每像素非线性。NiN去除了容易造成过拟合的全连接层,将它们替换为全局平均汇聚层(即在所有位置上进行求和)。该汇聚层通道数量为所需的输出数量(例如,Fashion-MNIST的输出为10)。移除全连接层可减少过拟合,同时显著减少NiN的参数。NiN的设计影响了许多后续卷积神经网络的设计。

04 含并行连结的网络-GoogLeNet

GoogLeNet吸收了NiN中串联网络的思想,并在此基础上做了改进。 这篇论文的一个重点是解决了什么样大小的卷积核最合适的问题。

1、Inception块

如何找到最好的卷积层超参数?

1 * 1的卷积、3 * 3的卷积等等,怎么样的才是最好的?

在GoogLeNet中,基本的卷积块被称为Inception块(Inception block)。Inception块的架构如下:

上图中可以看到Inception块由四条并行路径组成,输入被复制了四份传到不同的路径。

前三条路径使用窗口大小为1×1、3×3和5×5的卷积层,从不同空间大小中提取信息。中间的两条路径在输入上执行1×1卷积,以减少通道数,从而降低模型的复杂性。第四条路径使用3×3最大汇聚层,然后使用1×1卷积层来改变通道数

这四条路径都使用合适的填充来使输入与输出的高和宽一致,最后我们将每条线路的输出在通道维度上连结,并构成Inception块的输出。在Inception块中,通常调整的超参数是每层输出通道数。

下面看一下通道数的变化:

关于参数个数与计算复杂度:

2、GoogLeNet模型

GoogLeNet一共使用9个Inception块和全局平均汇聚层的堆叠来生成其估计值。Inception块之间的最大汇聚层可降低维度。 第一个模块类似于AlexNet和LeNet,Inception块的组合从VGG继承,全局平均汇聚层避免了在最后使用全连接层。其架构如下:

前面我们用的inception v1 ,后续发展中出现了许多变种:

3、代码实现

下面,我们逐一实现GoogLeNet的每个模块。

import torchfrom torch import nnfrom torch.nn import functional as Ffrom d2l import torch as d2l# 搭建Inception块class Inception(nn.Module):# c1--c4是每条路径的输出通道数def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):super(Inception, self).__init__(**kwargs)# 线路1,单1x1卷积层self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)# 线路2,1x1卷积层后接3x3卷积层self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)# 线路3,1x1卷积层后接5x5卷积层self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)# 线路4,3x3最大汇聚层后接1x1卷积层self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)def forward(self, x):p1 = F.relu(self.p1_1(x))p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))p4 = F.relu(self.p4_2(self.p4_1(x)))# 在通道维度上连结输出return torch.cat((p1, p2, p3, p4), dim=1)# 我们逐一实现GoogLeNet的每个模块。# 第一个模块使用64个通道、7*7卷积层。b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))# 第二个模块使用两个卷积层:第一个卷积层是64个通道、1*1卷积层;第二个卷积层使用将通道数量增加三倍的3*3卷积层。 这对应于Inception块中的第二条路径。b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),nn.ReLU(),nn.Conv2d(64, 192, kernel_size=3, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))# 第三个模块串联两个完整的Inception块。b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),Inception(256, 128, (128, 192), (32, 96), 64),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))# 第四模块更加复杂, 它串联了5个Inception块b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),Inception(512, 160, (112, 224), (24, 64), 64),Inception(512, 128, (128, 256), (24, 64), 64),Inception(512, 112, (144, 288), (32, 64), 64),Inception(528, 256, (160, 320), (32, 128), 128),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))# 第五模块包含两个Inception块b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),Inception(832, 384, (192, 384), (48, 128), 128),nn.AdaptiveAvgPool2d((1,1)),nn.Flatten())net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))

下面演示各个模块输出的形状变化。

X = torch.rand(size=(1, 1, 96, 96))for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t', X.shape)

结果演示:

Sequential output shape: torch.Size([1, 64, 24, 24])Sequential output shape: torch.Size([1, 192, 12, 12])Sequential output shape: torch.Size([1, 480, 6, 6])Sequential output shape: torch.Size([1, 832, 3, 3])Sequential output shape: torch.Size([1, 1024])Linear output shape: torch.Size([1, 10])

开始训练:

lr, num_epochs, batch_size = 0.1, 10, 128train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

4、总结

Inception块相当于一个有4条路径的子网络。它通过不同窗口形状的卷积层和最大汇聚层来并行抽取信息,并使用1×1卷积层减少每像素级别上的通道维数从而降低模型复杂度。GoogLeNet将多个设计精细的Inception块与其他层(卷积层、全连接层)串联起来。其中Inception块的通道数分配之比是在ImageNet数据集上通过大量的实验得来的。GoogLeNet和它的后继者们一度是ImageNet上最有效的模型之一:它以较低的计算复杂度提供了类似的测试精度。

05 批量归一化

训练深层神经网络是十分困难的,深层网络的收敛速度较慢。 在本节中,我们将介绍批量规范化(batch normalization)

1、训练深层网络

为什么出现批量归一化?

什么室批量归一化?

2、批量规范化层

批量规范化和其他层之间的一个关键区别是,由于批量规范化在完整的小批量上运行,因此我们不能像以前在引入其他层时那样忽略批量大小。 我们在下面讨论这两种情况:全连接层和卷积层,他们的批量规范化实现略有不同。

批量归一化在做什么?

总结:

批量归一化固定小批量中的均值和方差,然后学习出合适的偏移和缩放可以加速收敛速度,但一般不改变模型精度

3、代码实现

实现一个具有张量的批量规范化层。

import torchfrom torch import nnfrom d2l import torch as d2ldef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):# 通过is_grad_enabled来判断当前模式是训练模式还是预测模式if not torch.is_grad_enabled():# 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)else:assert len(X.shape) in (2, 4)if len(X.shape) == 2:# 使用全连接层的情况,计算特征维上的均值和方差mean = X.mean(dim=0)var = ((X - mean) ** 2).mean(dim=0)else:# 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。# 这里我们需要保持X的形状以便后面可以做广播运算mean = X.mean(dim=(0, 2, 3), keepdim=True)var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)# 训练模式下,用当前的均值和方差做标准化X_hat = (X - mean) / torch.sqrt(var + eps)# 更新移动平均的均值和方差moving_mean = momentum * moving_mean + (1.0 - momentum) * meanmoving_var = momentum * moving_var + (1.0 - momentum) * varY = gamma * X_hat + beta # 缩放和移位return Y, moving_mean.data, moving_var.data

我们现在可以创建一个正确的BatchNorm层。 这个层将保持适当的参数:拉伸gamma和偏移beta,这两个参数将在训练过程中更新。 此外,我们的层将保存均值和方差的移动平均值,以便在模型预测期间随后使用。

class BatchNorm(nn.Module):# num_features:完全连接层的输出数量或卷积层的输出通道数。# num_dims:2表示完全连接层,4表示卷积层def __init__(self, num_features, num_dims):super().__init__()if num_dims == 2:shape = (1, num_features)else:shape = (1, num_features, 1, 1)# 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0self.gamma = nn.Parameter(torch.ones(shape))self.beta = nn.Parameter(torch.zeros(shape))# 非模型参数的变量初始化为0和1self.moving_mean = torch.zeros(shape)self.moving_var = torch.ones(shape)def forward(self, X):# 如果X不在内存上,将moving_mean和moving_var# 复制到X所在显存上if self.moving_mean.device != X.device:self.moving_mean = self.moving_mean.to(X.device)self.moving_var = self.moving_var.to(X.device)# 保存更新过的moving_mean和moving_varY, self.moving_mean, self.moving_var = batch_norm(X, self.gamma, self.beta, self.moving_mean,self.moving_var, eps=1e-5, momentum=0.9)return Y

为了更好理解如何应用BatchNorm,下面我们将其应用于LeNet模型

net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),nn.Linear(84, 10))

训练

lr, num_epochs, batch_size = 1.0, 10, 256train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

让我们来看看从第一个批量规范化层中学到的拉伸参数gamma和偏移参数beta

net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))

结果展示:

(tensor([0.3362, 4.0349, 0.4496, 3.7056, 3.7774, 2.6762], device='cuda:0',grad_fn=<ReshapeAliasBackward0>),tensor([-0.5739, 4.1376, 0.5126, 0.3060, -2.5187, 0.3683], device='cuda:0',grad_fn=<ReshapeAliasBackward0>))

简洁实现:除了使用我们刚刚定义的BatchNorm,我们也可以直接使用深度学习框架中定义的BatchNorm

net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),nn.Linear(84, 10))

d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

4、争议

5、小结

在模型训练过程中,批量规范化利用小批量的均值和标准差,不断调整神经网络的中间输出,使整个神经网络各层的中间输出值更加稳定。批量规范化在全连接层和卷积层的使用略有不同。批量规范化层和暂退层一样,在训练模式和预测模式下计算不同。批量规范化有许多有益的副作用,主要是正则化。另一方面,”减少内部协变量偏移“的原始动机似乎不是一个有效的解释。

06 残差网络-ResNet

ResNet源自一种思想:加深神经网络

背景:何恺明等人提出了残差网络(ResNet) [He et al., a]。 它在的ImageNet图像识别挑战赛夺魁,并深刻影响了后来的深度神经网络的设计。 残差网络的核心思想是:每个附加层都应该更容易地包含原始函数作为其元素之一。

1、核心思想

1.1、函数类

补充:

恒等映射:对任意集合A,如果映射f:A→A定义为f(a)=a,即规定A中每个元素a与自身对应,则称f为A上的恒等映射(identical [identity] mapping)。

具体做法如下。

1.2、残差块

概念听的有点模糊,可以结合着代码理解:

ResNet沿用了VGG完整的3×3卷积层设计。 残差块里首先有2个有相同输出通道数的3×3卷积层。 每个卷积层后接一个批量规范化层和ReLU激活函数。 然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。 这样的设计要求2个卷积层的输出与输入形状一样,从而使它们可以相加。 如果想改变通道数,就需要引入一个额外的1×1卷积层来将输入变换成需要的形状后再做相加运算。

残差块的实现:

import torchfrom torch import nnfrom torch.nn import functional as Ffrom d2l import torch as d2lclass Residual(nn.Module): #@savedef __init__(self, input_channels, num_channels,use_1x1conv=False, strides=1):super().__init__()self.conv1 = nn.Conv2d(input_channels, num_channels,kernel_size=3, padding=1, stride=strides)self.conv2 = nn.Conv2d(num_channels, num_channels,kernel_size=3, padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels, num_channels,kernel_size=1, stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self, X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)

此代码生成两种类型的网络: 一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。 另一种是当use_1x1conv=True时,添加通过1×1卷积调整通道和分辨率。

下面我们来查看输入和输出形状一致的情况。

blk = Residual(3,3)X = torch.rand(4, 3, 6, 6)Y = blk(X)Y.shape

torch.Size([4, 3, 6, 6])

我们也可以在增加输出通道数的同时,减半输出的高和宽。

blk = Residual(3,6, use_1x1conv=True, strides=2)blk(X).shape

torch.Size([4, 6, 3, 3])

可以使用不同的残差块:

2、ResNet模型

不同的ResNet块数量和数据通道数,可以得到不同的ResNet架构

ResNet的前两层跟之前介绍的GoogLeNet中的一样: 在输出通道数为64、步幅为2的7×7卷积层后,接步幅为2的3×3的最大汇聚层。 不同之处在于ResNet每个卷积层后增加了批量规范化层。

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

GoogLeNet在后面接了4个由Inception块组成的模块。 ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。 第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。 之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。

下面我们来实现这个模块。注意,我们对第一个模块做了特别处理。

def resnet_block(input_channels, num_channels, num_residuals,first_block=False):blk = []for i in range(num_residuals):if i == 0 and not first_block:blk.append(Residual(input_channels, num_channels,use_1x1conv=True, strides=2))else:blk.append(Residual(num_channels, num_channels))return blk

接着在ResNet加入所有残差块,这里每个模块使用2个残差块。

b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))b3 = nn.Sequential(*resnet_block(64, 128, 2))b4 = nn.Sequential(*resnet_block(128, 256, 2))b5 = nn.Sequential(*resnet_block(256, 512, 2))

最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。

net = nn.Sequential(b1, b2, b3, b4, b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(), nn.Linear(512, 10))

每个模块有4个卷积层(不包括恒等映射的1×1卷积层)。 加上第一个7×7卷积层和最后一个全连接层,共有18层。 因此,这种模型通常被称为ResNet-18。 通过配置不同的通道数和模块里的残差块数可以得到不同的ResNet模型,例如更深的含152层的ResNet-152。 虽然ResNet的主体架构跟GoogLeNet类似,但ResNet架构更简单,修改也更方便。这些因素都导致了ResNet迅速被广泛使用。下图描述了完整的ResNet-18。

在训练ResNet之前,让我们观察一下ResNet中不同模块的输入形状是如何变化的。 在之前所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征。

X = torch.rand(size=(1, 1, 224, 224))for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t', X.shape)

Sequential output shape:torch.Size([1, 64, 56, 56])Sequential output shape:torch.Size([1, 64, 56, 56])Sequential output shape:torch.Size([1, 128, 28, 28])Sequential output shape:torch.Size([1, 256, 14, 14])Sequential output shape:torch.Size([1, 512, 7, 7])AdaptiveAvgPool2d output shape:torch.Size([1, 512, 1, 1])Flatten output shape: torch.Size([1, 512])Linear output shape: torch.Size([1, 10])

开始训练:

lr, num_epochs, batch_size = 0.05, 10, 256train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

2.1 整合代码

import torchfrom torch import nnfrom torch.nn import functional as Ffrom d2l import torch as d2lclass Residual(nn.Module): #@savedef __init__(self, input_channels, num_channels,use_1x1conv=False, strides=1):super().__init__()self.conv1 = nn.Conv2d(input_channels, num_channels,kernel_size=3, padding=1, stride=strides)self.conv2 = nn.Conv2d(num_channels, num_channels,kernel_size=3, padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels, num_channels,kernel_size=1, stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self, X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)# ResNet的前两层跟之前介绍的GoogLeNet中的一样: 在输出通道数为64、步幅为2的卷积层后,接步幅为2的的最大汇聚层。 不同之处在于ResNet每个卷积层后增加了批量规范化层。b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))# GoogLeNet在后面接了4个由Inception块组成的模块。 ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。 第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。 之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。#下面我们来实现这个模块。注意,我们对第一个模块做了特别处理。def resnet_block(input_channels, num_channels, num_residuals,first_block=False):blk = []for i in range(num_residuals):if i == 0 and not first_block:blk.append(Residual(input_channels, num_channels,use_1x1conv=True, strides=2))else:blk.append(Residual(num_channels, num_channels))return blk# 接着在ResNet加入所有残差块,这里每个模块使用2个残差块。b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))b3 = nn.Sequential(*resnet_block(64, 128, 2))b4 = nn.Sequential(*resnet_block(128, 256, 2))b5 = nn.Sequential(*resnet_block(256, 512, 2))# 最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。net = nn.Sequential(b1, b2, b3, b4, b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(), nn.Linear(512, 10))

lr, num_epochs, batch_size = 0.05, 10, 256train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

3、总结

残差块使得很深的网络更加容易训练 甚至可以训练一千层的网络 残差网络对随后的深层神经网络设计产生了深远影响,无论是卷积类网络还是全连接类网络学习嵌套函数(nested function)是训练神经网络的理想情况。在深层神经网络中,学习另一层作为恒等映射(identity function)较容易(尽管这是一个极端情况)。残差映射可以更容易地学习同一函数,例如将权重层中的参数近似为零。利用残差块(residual blocks)可以训练出一个有效的深层神经网络:输入可以通过层间的残余连接更快地向前传播。残差网络(ResNet)对随后的深层神经网络设计产生了深远影响。

4、ResNet为什么能训练出1000层的模型

29.2 ResNet为什么能训练出1000层的模型【动手学深度学习v2】_哔哩哔哩_bilibili

07 稠密连接网络-DenseNet

7.7. 稠密连接网络(DenseNet) — 动手学深度学习 2.0.0-beta1 documentation (d2l.ai)

08 竞赛:图像分类

视频:30 第二部分完结竞赛:图片分类【动手学深度学习v2】_哔哩哔哩_bilibili

竞赛地址:/c/classify-leaves

38 第二次竞赛 树叶分类结果【动手学深度学习v2】_哔哩哔哩_bilibili39 实战 Kaggle 比赛:图像分类(CIFAR-10)【动手学深度学习v2】_哔哩哔哩_bilibili40 实战 Kaggle 比赛:狗的品种识别(ImageNet Dogs)【动手学深度学习v2】_哔哩哔哩_bilibili43 树叶分类竞赛技术总结【动手学深度学习v2】_哔哩哔哩_bilibili

如果觉得《动手学习深度学习 07:现代卷积神经网络(AlexNet VGG NiN GoogleNet 批量归一化 ResNet DenseNet)》对你有帮助,请点赞、收藏,并留下你的观点哦!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。