失眠网,内容丰富有趣,生活中的好帮手!
失眠网 > 【Java】八个常用的排序算法:插入排序 冒泡排序 选择排序 希尔排序 快速排序

【Java】八个常用的排序算法:插入排序 冒泡排序 选择排序 希尔排序 快速排序

时间:2023-12-22 11:21:39

相关推荐

【Java】八个常用的排序算法:插入排序 冒泡排序 选择排序 希尔排序  快速排序

这篇文章主要介绍了Java如何实现八个常用的排序算法:插入排序、冒泡排序、选择排序、希尔排序 、快速排序、归并排序、堆排序和LST基数排序,需要的朋友可以参考下

本文实现了八个常用的排序算法:插入排序、冒泡排序、选择排序、希尔排序 、快速排序、归并排序、堆排序和LST基数排序

首先是EightAlgorithms.java文件,代码如下:

import java.util.Arrays; /* * 实现了八个常用的排序算法:插入排序、冒泡排序、选择排序、希尔排序 * 以及快速排序、归并排序、堆排序和LST基数排序 * @author gkh178 */public class EightAlgorithms { //插入排序:时间复杂度o(n^2) public static void insertSort(int a[], int n) { for (int i = 1; i < n; ++i) { int temp = a[i]; int j = i - 1; while (j >= 0 && a[j] > temp) { a[j + 1] =a[j]; --j; } a[j + 1] = temp; } } //冒泡排序:时间复杂度o(n^2) public static void bubbleSort(int a[], int n) { for (int i = n - 1; i > 0; --i) { for (int j = 0; j < i; ++j) { if (a[j] > a[j + 1]) { int temp = a[j]; a[j] = a[j + 1]; a[j + 1] = temp;} } } } //选择排序:时间复杂度o(n^2) public static void selectSort(int a[], int n) { for (int i = 0; i < n - 1; ++i) { int min = a[i]; int index = i; for (int j = i + 1; j < n; ++j) { if (a[j] < min) { min = a[j]; index = j; } } a[index] = a[i]; a[i] = min; } } //希尔排序:时间复杂度介于o(n^2)和o(nlgn)之间 public static void shellSort(int a[], int n) { for (int gap = n / 2; gap >= 1; gap /= 2) { for (int i = gap; i < n; ++i) { int temp = a[i]; int j = i -gap; while (j >= 0 && a[j] > temp) { a[j + gap] = a[j]; j -= gap; } a[j + gap] = temp; } } } //快速排序:时间复杂度o(nlgn) public static void quickSort(int a[], int n) { _quickSort(a, 0, n-1); } public static void _quickSort(int a[], int left, int right) { if (left < right) { int q = _partition(a, left, right); _quickSort(a, left, q - 1); _quickSort(a, q + 1, right); } } public static int _partition(int a[], int left, int right) { int pivot = a[left]; while (left < right) { while (left < right && a[right] >= pivot) { --right; } a[left] = a[right]; while (left <right && a[left] <= pivot) { ++left; } a[right] = a[left]; } a[left] = pivot; return left; } //归并排序:时间复杂度o(nlgn) public static void mergeSort(int a[], int n) { _mergeSort(a, 0 , n-1); } public static void _mergeSort(int a[], int left, int right) { if (left <right) { int mid = left + (right - left) / 2; _mergeSort(a, left, mid); _mergeSort(a, mid + 1, right); _merge(a, left, mid, right); } } public static void _merge(int a[], int left, int mid, int right) { int length = right - left + 1; int newA[] = new int[length]; for (int i = 0, j = left; i <= length - 1; ++i, ++j) { newA[i] = a[j]; } int i = 0; int j = mid -left + 1; int k = left; for (; i <= mid - left && j <= length - 1; ++k) { if (newA[i] < newA[j]) { a[k] = newA[i++]; } else { a[k] = newA[j++]; } } while (i <= mid - left) { a[k++] = newA[i++]; } while (j <= right - left) { a[k++] = newA[j++]; } } //堆排序:时间复杂度o(nlgn) public static void heapSort(int a[], int n) { builtMaxHeap(a, n);//建立初始大根堆 //交换首尾元素,并对交换后排除尾元素的数组进行一次上调整 for (int i = n - 1; i >= 1; --i) { int temp = a[0]; a[0] = a[i]; a[i] = temp; upAdjust(a, i); } } //建立一个长度为n的大根堆 public static void builtMaxHeap(int a[], int n) { upAdjust(a, n); } //对长度为n的数组进行一次上调整 public static void upAdjust(int a[], int n) { //对每个带有子女节点的元素遍历处理,从后到根节点位置 for (int i = n / 2; i >= 1; --i) { adjustNode(a, n, i); } } //调整序号为i的节点的值 public static void adjustNode(int a[], int n, int i) { //节点有左右孩子 if (2 * i + 1 <= n) { //右孩子的值大于节点的值,交换它们 if (a[2 * i] > a[i - 1]) { int temp = a[2 * i]; a[2 * i] = a[i - 1]; a[i - 1] = temp; } //左孩子的值大于节点的值,交换它们 if (a[2 * i -1] > a[i - 1]) { int temp = a[2 * i - 1]; a[2 * i - 1] = a[i - 1]; a[i - 1] = temp; } //对节点的左右孩子的根节点进行调整 adjustNode(a, n, 2 * i); adjustNode(a, n, 2 * i + 1); } //节点只有左孩子,为最后一个有左右孩子的节点 else if (2 * i == n) { //左孩子的值大于节点的值,交换它们 if (a[2 * i -1] > a[i - 1]) { int temp = a[2 * i - 1]; a[2 * i - 1] = a[i - 1]; a[i - 1] = temp; } } } //基数排序的时间复杂度为o(distance(n+radix)),distance为位数,n为数组个数,radix为基数 //本方法是用LST方法进行基数排序,MST方法不包含在内 //其中参数radix为基数,一般为10;distance表示待排序的数组的数字最长的位数;n为数组的长度 public static void lstRadixSort(int a[], int n, int radix, int distance) { int[] newA = new int[n];//用于暂存数组 int[] count = new int[radix];//用于计数排序,保存的是当前位的值为0 到 radix-1的元素出现的的个数 int divide = 1; //从倒数第一位处理到第一位 for (int i = 0; i < distance; ++i) { System.arraycopy(a, 0, newA, 0, n);//待排数组拷贝到newA数组中 Arrays.fill(count, 0);//将计数数组置0 for (int j = 0; j < n; ++j) { int radixKey = (newA[j] / divide) % radix; //得到数组元素的当前处理位的值 count[radixKey]++; } //此时count[]中每个元素保存的是radixKey位出现的次数 //计算每个radixKey在数组中的结束位置,位置序号范围为1-n for (int j = 1; j < radix; ++j) { count[j] = count[j] + count[j - 1]; } //运用计数排序的原理实现一次排序,排序后的数组输出到a[] for (int j = n - 1; j >= 0; --j) { int radixKey = (newA[j] / divide) % radix; a[count[radixKey] - 1] = newA[j]; --count[radixKey]; } divide = divide * radix; } } }

然后测试代码TestEightAlgorithms.java,代码如下:

本文转载于/article/70368.htm

【Java】八个常用的排序算法:插入排序 冒泡排序 选择排序 希尔排序 快速排序 归并排序 堆排序和LST基数排序

如果觉得《【Java】八个常用的排序算法:插入排序 冒泡排序 选择排序 希尔排序 快速排序 》对你有帮助,请点赞、收藏,并留下你的观点哦!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。