失眠网,内容丰富有趣,生活中的好帮手!
失眠网 > UA MATH564 概率论 样本均值的偏度与峰度

UA MATH564 概率论 样本均值的偏度与峰度

时间:2022-03-19 12:34:05

相关推荐

UA MATH564 概率论 样本均值的偏度与峰度

UA MATH564 概率论 样本均值的偏度与峰度

偏度峰度

假设X1,⋯,XnX_1,\cdots,X_nX1​,⋯,Xn​是一组简单随机样本,Xˉ\bar{X}Xˉ是样本均值,总体均值为μ\muμ,总体方差为σ2\sigma^2σ2,总体的偏度为γ1\gamma_1γ1​,峰度为γ2\gamma_2γ2​,下面计算样本均值的偏度γ1,n\gamma_{1,n}γ1,n​与峰度γ2,n\gamma_{2,n}γ2,n​,先给出结论:

γ1,n=γ1n,γ2,n=γ2n+3n(n−1)n2\gamma_{1,n} = \frac{\gamma_1}{\sqrt{n}},\ \ \gamma_{2,n} = \frac{\gamma_2}{n} + \frac{3n(n-1)}{n^2}γ1,n​=n​γ1​​,γ2,n​=nγ2​​+n23n(n−1)​

偏度

偏度的定义是

γ1=E[X−μσ]3=1σ3(EX3−3μEX2+3μ2EX−μ3)=1σ3(EX3−3μ(μ2+σ2)+3μ3−μ3)=EX3−3μσ2−μ3σ3\gamma_1 = E \left[ \frac{X-\mu}{\sigma} \right]^3 = \frac{1}{\sigma^3}( EX^3 - 3\mu EX^2 + 3\mu^2 EX - \mu^3) \\ = \frac{1}{\sigma^3}( EX^3 - 3\mu (\mu^2 + \sigma^2) + 3\mu^3 - \mu^3) = \frac{EX^3-3\mu\sigma^2-\mu^3}{\sigma^3}γ1​=E[σX−μ​]3=σ31​(EX3−3μEX2+3μ2EX−μ3)=σ31​(EX3−3μ(μ2+σ2)+3μ3−μ3)=σ3EX3−3μσ2−μ3​

我们知道

EXˉ=μ,Var(Xˉ)=σ2nE\bar{X} = \mu,\ \ Var(\bar{X}) = \frac{\sigma^2}{n}EXˉ=μ,Var(Xˉ)=nσ2​

因此

γ1,n=EXˉ3−3μσ2/n−μ3σ3/n3/2EXˉ3=1n3E(∑i=1nXi)3\gamma_{1,n} = \frac{E\bar{X}^3-3\mu\sigma^2/n-\mu^3}{\sigma^3/n^{3/2}} \\ E\bar{X}^3 = \frac{1}{n^3} E \left( \sum_{i=1}^n X_i \right)^3γ1,n​=σ3/n3/2EXˉ3−3μσ2/n−μ3​EXˉ3=n31​E(i=1∑n​Xi​)3

注意到(∑i=1nXi)3\left( \sum_{i=1}^n X_i \right)^3(∑i=1n​Xi​)3的展开式一共有n3n^3n3项,其中有An1A_n^1An1​项是Xi3X_i^3Xi3​,有C31C22An2C_3^1C_2^2A_n^2C31​C22​An2​项是Xi2Xj,i≠jX_i^2X_j,i \ne jXi2​Xj​,i​=j,有An3A_n^3An3​项是XiXjXk,i≠j≠kX_iX_jX_k,i \ne j \ne kXi​Xj​Xk​,i​=j​=k

E[XiXjXk]=EXiEXjEXk=μ3E[Xi2Xj]=EXi2EXj=(μ2+σ2)μ=μ3+μσ2E[Xi3]=μ3+3μσ2+γ1σ3E[X_iX_jX_k] = EX_iEX_jEX_k = \mu^3 \\ E[X_i^2X_j] = EX_i^2EX_j = (\mu^2 + \sigma^2)\mu =\mu^3 + \mu \sigma^2 \\ E[X_i^3] = \mu^3 + 3\mu\sigma^2 + \gamma_1 \sigma^3 E[Xi​Xj​Xk​]=EXi​EXj​EXk​=μ3E[Xi2​Xj​]=EXi2​EXj​=(μ2+σ2)μ=μ3+μσ2E[Xi3​]=μ3+3μσ2+γ1​σ3

因此

EXˉ3=n(μ3+3μσ2+γ1σ3)+3n(n−1)(μ3+μσ2)+n(n−1)(n−2)μ3n3=σ3γ1n2+3μσ2n+μ3EXˉ3−3μσ2/n−μ3=σ3γ1n2E\bar{X}^3 = \frac{n(\mu^3 + 3\mu\sigma^2 + \gamma_1 \sigma^3) + 3n(n-1)(\mu^3 + \mu \sigma^2) + n(n-1)(n-2)\mu^3}{n^3} \\ = \frac{\sigma^3\gamma_1}{n^2} + \frac{3\mu\sigma^2}{n}+ \mu^3 \\ E\bar{X}^3 -3\mu\sigma^2/n-\mu^3 = \frac{\sigma^3\gamma_1}{n^2} EXˉ3=n3n(μ3+3μσ2+γ1​σ3)+3n(n−1)(μ3+μσ2)+n(n−1)(n−2)μ3​=n2σ3γ1​​+n3μσ2​+μ3EXˉ3−3μσ2/n−μ3=n2σ3γ1​​

所以样本均值的偏度为

γ1,n=γ1n\gamma_{1,n} = \frac{\gamma_1}{\sqrt{n}}γ1,n​=n​γ1​​

峰度

偏度的定义是(另一种定义是在这个基础上减3,3是标准正态分布的峰度,用来作参考)

γ2=E[X−μσ]4=1σ4(EX4−4μEX3+6μ2EX2−4μ3EX+μ4)=1σ4(EX4−4μ(μ3+3μσ2+γ1σ3)+6μ2(μ2+σ2)−4μ4+μ4)=EX4−4μγ1σ3−6μ2σ2−μ4σ4\gamma_2 = E \left[ \frac{X-\mu}{\sigma} \right]^4 = \frac{1}{\sigma^4}( EX^4 - 4\mu EX^3 + 6\mu^2 EX^2 - 4\mu^3EX + \mu^4) \\ = \frac{1}{\sigma^4}( EX^4 - 4\mu (\mu^3 + 3\mu\sigma^2 + \gamma_1 \sigma^3) + 6\mu^2 (\mu^2 + \sigma^2) - 4\mu^4 + \mu^4) \\ = \frac{EX^4 - 4\mu\gamma_1 \sigma^3 - 6\mu^2\sigma^2 - \mu^4}{\sigma^4}γ2​=E[σX−μ​]4=σ41​(EX4−4μEX3+6μ2EX2−4μ3EX+μ4)=σ41​(EX4−4μ(μ3+3μσ2+γ1​σ3)+6μ2(μ2+σ2)−4μ4+μ4)=σ4EX4−4μγ1​σ3−6μ2σ2−μ4​

我们知道

EXˉ=μ,Var(Xˉ)=σ2n,γ1,n=γ1nE\bar{X} = \mu,\ \ Var(\bar{X}) = \frac{\sigma^2}{n}, \ \ \gamma_{1,n} = \frac{\gamma_1}{\sqrt{n}}EXˉ=μ,Var(Xˉ)=nσ2​,γ1,n​=n​γ1​​

因此

γ2,n=EXˉ4−4μγ1σ3/n2−6μ2σ2/n−μ4σ4/n2EXˉ4=1n4E(∑i=1nXi)4\gamma_{2,n} = \frac{E\bar{X}^4 - 4\mu\gamma_1 \sigma^3/n^2 - 6\mu^2\sigma^2/n - \mu^4}{\sigma^4/n^{2}} \\ E\bar{X}^4 = \frac{1}{n^4} E \left( \sum_{i=1}^n X_i \right)^4γ2,n​=σ4/n2EXˉ4−4μγ1​σ3/n2−6μ2σ2/n−μ4​EXˉ4=n41​E(i=1∑n​Xi​)4

注意到(∑i=1nXi)4\left( \sum_{i=1}^n X_i \right)^4(∑i=1n​Xi​)4的展开式一共有n4n^4n4项,其中有An1A_n^1An1​项是Xi4X_i^4Xi4​,有C42Cn2C_4^2C_n^2C42​Cn2​项是Xi2Xj2,i≠jX_i^2X_j^2,i \ne jXi2​Xj2​,i​=j,有C41C33An2C_4^1C_3^3A_n^2C41​C33​An2​项是Xi3Xj,i≠jX_i^3X_j,i \ne jXi3​Xj​,i​=j,有C42C21C11An3C_4^2C_2^1C_1^1A_n^3C42​C21​C11​An3​项是Xi2XjXk,i≠j≠kX_i^2X_jX_k,i \ne j \ne kXi2​Xj​Xk​,i​=j​=k,有An4A_n^4An4​项是XiXjXkXl,i≠j≠k≠lX_iX_jX_kX_l,i\ne j \ne k \ne lXi​Xj​Xk​Xl​,i​=j​=k​=l

E[XiXjXkXl]=EXiEXjEXkEXl=μ4E[Xi2XjXk]=EXi2EXjEXk=(μ2+σ2)μ2=μ4+μ2σ2E[Xi3Xj]=EXi3EXj=(μ3+3μσ2+γ1σ3)μ=μ4+3μ2σ2+μγ1σ3E[Xi2Xj2]=EXi2EXj2=(μ2+σ2)2=μ4+2μ2σ2+σ4EXi4=σ4γ2+4μγ1σ3+6μ2σ2+μ4E[X_iX_jX_kX_l] = EX_iEX_jEX_k EX_l= \mu^4\\ E[X_i^2X_jX_k] = EX_i^2EX_jEX_k = (\mu^2 + \sigma^2)\mu^2 = \mu^4 + \mu^2 \sigma^2 \\ E[X_i^3X_j] = EX_i^3EX_j = (\mu^3 + 3\mu\sigma^2 + \gamma_1 \sigma^3)\mu =\mu^4 + 3\mu^2 \sigma^2 + \mu \gamma_1 \sigma^3 \\ E[X_i^2X_j^2] = EX_i^2EX_j^2 = (\mu^2 + \sigma^2)^2 = \mu^4 + 2\mu^2 \sigma^2 + \sigma^4 \\ EX_i^4 = \sigma^4 \gamma_2+ 4\mu\gamma_1 \sigma^3 + 6\mu^2\sigma^2 + \mu^4E[Xi​Xj​Xk​Xl​]=EXi​EXj​EXk​EXl​=μ4E[Xi2​Xj​Xk​]=EXi2​EXj​EXk​=(μ2+σ2)μ2=μ4+μ2σ2E[Xi3​Xj​]=EXi3​EXj​=(μ3+3μσ2+γ1​σ3)μ=μ4+3μ2σ2+μγ1​σ3E[Xi2​Xj2​]=EXi2​EXj2​=(μ2+σ2)2=μ4+2μ2σ2+σ4EXi4​=σ4γ2​+4μγ1​σ3+6μ2σ2+μ4

计算

n(σ4γ2+4μγ1σ3+6μ2σ2+μ4)+3n(n−1)(μ4+2μ2σ2+σ4)+4n(n−1)(μ4+3μ2σ2+μγ1σ3)+6n(n−1)(n−2)(μ4+μ2σ2)+n(n−1)(n−2)(n−3)μ4=nσ4γ2+4n2μγ1σ2+3n(n−1)σ4+n4μ4+6n3μ2σ2n(\sigma^4 \gamma_2+ 4\mu\gamma_1 \sigma^3 + 6\mu^2\sigma^2 + \mu^4) + 3n(n-1)( \mu^4 + 2\mu^2 \sigma^2 + \sigma^4) \\+ 4n(n-1)(\mu^4 + 3\mu^2 \sigma^2 + \mu \gamma_1 \sigma^3 ) +6n(n-1)(n-2)(\mu^4 + \mu^2 \sigma^2) \\ + n(n-1)(n-2)(n-3)\mu^4 = n\sigma^4 \gamma_2+4n^2\mu\gamma_1\sigma^2 + 3n(n-1)\sigma^4+ n^4 \mu^4 + 6n^3\mu^2\sigma^2n(σ4γ2​+4μγ1​σ3+6μ2σ2+μ4)+3n(n−1)(μ4+2μ2σ2+σ4)+4n(n−1)(μ4+3μ2σ2+μγ1​σ3)+6n(n−1)(n−2)(μ4+μ2σ2)+n(n−1)(n−2)(n−3)μ4=nσ4γ2​+4n2μγ1​σ2+3n(n−1)σ4+n4μ4+6n3μ2σ2

也就是

EXˉ4=nσ4γ2+4n2μγ1σ2+3n(n−1)σ4+n4μ4+6n3μ2σ2n4=σ4n3γ2+4μγ1σ2n2+μ4+6nμ2σ2+3n(n−1)n4σ4E\bar{X}^4 = \frac{n\sigma^4 \gamma_2+4n^2\mu\gamma_1\sigma^2 + 3n(n-1)\sigma^4+ n^4 \mu^4 + 6n^3\mu^2\sigma^2}{n^4} \\ = \frac{\sigma^4}{n^3}\gamma_2 + \frac{4\mu\gamma_1\sigma^2}{n^2} + \mu^4 + \frac{6}{n}\mu^2\sigma^2 + \frac{3n(n-1)}{n^4}\sigma^4EXˉ4=n4nσ4γ2​+4n2μγ1​σ2+3n(n−1)σ4+n4μ4+6n3μ2σ2​=n3σ4​γ2​+n24μγ1​σ2​+μ4+n6​μ2σ2+n43n(n−1)​σ4

因此

γ2,n=γ2n+3n(n−1)n2\gamma_{2,n} = \frac{\gamma_2}{n} + \frac{3n(n-1)}{n^2}γ2,n​=nγ2​​+n23n(n−1)​

如果觉得《UA MATH564 概率论 样本均值的偏度与峰度》对你有帮助,请点赞、收藏,并留下你的观点哦!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。