失眠网,内容丰富有趣,生活中的好帮手!
失眠网 > 样本方差无偏估计的(n-1)

样本方差无偏估计的(n-1)

时间:2023-09-01 09:29:38

相关推荐

样本方差无偏估计的(n-1)

参考链接

/s/blog_c96053d60101n24f.html

总体均值和方差

设 X X X服从某一分布 X ∼ F X\sim F X∼F,则 X X X的总体均值为 E ( X ) = μ E\left ( X\right )=\mu E(X)=μ,总体方差为 D ( X ) ∼ σ 2 D\left ( X\right )\sim \sigma ^{2} D(X)∼σ2。

样本的均值

我们不能获取到分布中的所有点,只能从中随机采样一部分样本,以估计整体分布情况。

设 n n n个样本为 x 1 , x 2 , ⋅ ⋅ ⋅ , x n x_{1},x_{2},\cdot \cdot \cdot ,x_{n} x1​,x2​,⋅⋅⋅,xn​,则样本的均值为 x ˉ = 1 n ∑ i = 1 n x i \bar{x}=\frac{1}{n}\sum_{i=1}^{n}x_{i} xˉ=n1​∑i=1n​xi​。由于样本是随机采样的,所以样本的均值实际上也是随机的,同样有一个期望和方差:

E ( x ˉ ) = E ( 1 n ∑ i = 1 n x i ) = 1 n ∑ i = 1 n E ( x i ) = 1 n × n E ( x i ) = E ( x i ) = μ E\left ( \bar{x}\right )=E\left ( \frac{1}{n}\sum_{i=1}^{n}x_{i}\right )=\frac{1}{n}\sum_{i=1}^{n}E\left ( x_{i}\right )=\frac{1}{n}\times nE\left ( x_{i}\right )=E\left ( x_{i}\right )=\mu E(xˉ)=E(n1​∑i=1n​xi​)=n1​∑i=1n​E(xi​)=n1​×nE(xi​)=E(xi​)=μ

D ( x ˉ ) = D ( 1 n ∑ i = 1 n x i ) = 1 n 2 ∑ i = 1 n D ( x i ) = σ 2 n D\left ( \bar{x}\right )=D\left ( \frac{1}{n}\sum_{i=1}^{n}x_{i}\right )=\frac{1}{n^{2}}\sum_{i=1}^{n}D\left ( x_{i}\right )=\frac{\sigma ^{2}}{n} D(xˉ)=D(n1​∑i=1n​xi​)=n21​∑i=1n​D(xi​)=nσ2​

可以看出,样本均值的期望就是总体均值,因此可以说均值是无偏的。

样本的方差

样本方差的期望为:

E ( S 2 ) = E [ 1 n ∑ i = 1 n ( x i − x ˉ ) 2 ] = 1 n E [ ∑ i = 1 n ( x i 2 − 2 x i x ˉ + x ˉ 2 ) ] = 1 n E [ ∑ i = 1 n ( x i 2 ) ] − 1 n E ( 2 x ˉ × n x ˉ − n x ˉ 2 ) = 1 n ∑ i = 1 n E ( x i 2 ) − E ( x ˉ 2 ) E\left ( S^{2}\right )=E\left [ \frac{1}{n}\sum_{i=1}^{n}\left ( x_{i}-\bar{x}\right )^{2}\right ]=\frac{1}{n}E\left [ \sum_{i=1}^{n}\left ( x_{i}^{2}-2x_{i}\bar{x}+\bar{x}^{2}\right )\right ]\\ =\frac{1}{n}E\left [ \sum_{i=1}^{n}\left ( x_{i}^{2}\right )\right ]-\frac{1}{n}E\left ( 2\bar{x}\times n\bar{x}-n\bar{x}^{2}\right )=\frac{1}{n}\sum_{i=1}^{n}E\left ( x_{i}^{2}\right )-E\left ( \bar{x}^{2}\right ) E(S2)=E[n1​∑i=1n​(xi​−xˉ)2]=n1​E[∑i=1n​(xi2​−2xi​xˉ+xˉ2)]=n1​E[∑i=1n​(xi2​)]−n1​E(2xˉ×nxˉ−nxˉ2)=n1​∑i=1n​E(xi2​)−E(xˉ2)

由方差公式,有:

E ( x i 2 ) = D ( x i ) + E 2 ( x i ) = σ 2 + μ 2 E\left ( x_{i}^{2}\right )=D\left ( x_{i}\right )+E^{2}\left ( x_{i}\right )=\sigma ^{2}+\mu ^{2} E(xi2​)=D(xi​)+E2(xi​)=σ2+μ2

E ( x ˉ 2 ) = D ( x ˉ ) + E 2 ( x ˉ ) = σ 2 n + μ 2 E\left ( \bar{x}^{2}\right )=D\left ( \bar{x}\right )+E^{2}\left ( \bar{x}\right )=\frac{\sigma ^{2}}{n}+\mu ^{2} E(xˉ2)=D(xˉ)+E2(xˉ)=nσ2​+μ2

因此, E ( S 2 ) = n − 1 n σ 2 E\left ( S^{2}\right )=\frac{n-1}{n}\sigma ^{2} E(S2)=nn−1​σ2

无偏估计的样本方差

从上面得到的 E ( S 2 ) = n − 1 n σ 2 E\left ( S^{2}\right )=\frac{n-1}{n}\sigma ^{2} E(S2)=nn−1​σ2,可以看出,样本方差的期望不是无偏的,需要乘上一个系数,于是:

n − 1 n S 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 \frac{n-1}{n}S^{2}=\frac{1}{n-1}\sum_{i=1}^{n}\left ( x_{i}-\bar{x}\right )^{2} nn−1​S2=n−11​∑i=1n​(xi​−xˉ)2

n-1即为自由度,就是说,在一个容量为n的样本里,当确定了n-1个变量以后,第n个变量就确定了,因为样本均值是无偏的。

如果觉得《样本方差无偏估计的(n-1)》对你有帮助,请点赞、收藏,并留下你的观点哦!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。