失眠网,内容丰富有趣,生活中的好帮手!
失眠网 > 样本方差分母为什么是n-1?——无偏估计

样本方差分母为什么是n-1?——无偏估计

时间:2019-01-05 03:08:50

相关推荐

样本方差分母为什么是n-1?——无偏估计

文章目录

1 总体方差和样本方差2 方差的无偏估计3 从自由度角度理解样本方差为什么除以n−1n-1n−1?

1 总体方差和样本方差

首先要分清总体和样本:

总体:研究对象的整个群体

比如总共10名玩家的年龄。样本:总体的一个子集

比如其中5名队员玩家的年龄。

方差(Variance),衡量随机变量或一组数据离散程度的度量。根据总体和样本的区别分为总体方差和样本方差两种。

总体方差定义为:

σ2=∑i=1n(Xi−μ)2n\sigma^{2}=\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{n} σ2=n∑i=1n​(Xi​−μ)2​

样本方差被定义为:

S2=∑i=1n(Xi−xˉ)2n−1S^{2}=\frac{\sum_{i=1}^{n}(X_{i}-\bar{x})^{2}}{n-1} S2=n−1∑i=1n​(Xi​−xˉ)2​

在实际应用中是通过在总体中取样本,用其样本均值和样本方差S2S^{2}S2来估计总体的均值σ2\sigma^{2}σ2:

S2→σ2S^{2}\rightarrow\sigma^{2} S2→σ2

但是这样会产生一个问题,这两个在什么情况下能够等价?

下面举一个例子,假设我们抽取一个样本包含三个数据点:x1,x2,x3x_{1},x_{2},x_{3}x1​,x2​,x3​,然后我们可以计算它的方差,当然这个方差还是除以nnn意义下的方差:

S2=(x1−μ)2+(x2−μ)2+(x3−μ)23=3nμ2−2x1+x2+x33μ+x12+x22+x323\begin{aligned} S^{2} &=\frac{(x_{1}-\mu)^{2}+(x_{2}-\mu)^{2}+(x_{3}-\mu)^{2}}{3}\\ &=\frac{3}{n}\mu^{2}-2\frac{x_{1}+x_{2}+x_{3}}{3}\mu+\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}{3} \end{aligned} S2​=3(x1​−μ)2+(x2​−μ)2+(x3​−μ)2​=n3​μ2−23x1​+x2​+x3​​μ+3x12​+x22​+x32​​​

由上可见这是一个二次函数,我们可以将其画出来:

上图中,横坐标为均值μ\muμ,纵坐标为方差S2S^{2}S2。当均值在变动的时候,方差也随之变化:

方差最小的地方对应的值为:

b−2a=−2x1+x2+x33−233=xˉ\frac{b}{-2a}=\frac{-2\frac{x_{1}+x_{2}+x_{3}}{3}}{-2\frac{3}{3}}=\bar{x} −2ab​=−233​−23x1​+x2​+x3​​​=xˉ

所以发现用样本均值算出的样本方差S2S^{2}S2是其所有可能取值的下限。所以有关系:

∑(x−xˉ)2n<∑(x−μ)2N\frac{\sum(x-\bar{x})^{2}}{n}<\frac{\sum(x-\mu)^{2}}{N} n∑(x−xˉ)2​<N∑(x−μ)2​

其中nnn为样本个数,NNN为总体个数,或者:

∑i=1n(Xi−Xˉ)2<∑i=1n(Xi−μ)2\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}<\sum_{i=1}^{n}(X_{i}-\mu)^{2} i=1∑n​(Xi​−Xˉ)2<i=1∑n​(Xi​−μ)2

这里需要分析一下是哪种情况??????

这会导致:

S2=∑i=1n(Xi−xˉ)2n<σ2=∑i=1n(Xi−μ)2nS^{2}=\frac{\sum_{i=1}^{n}(X_{i}-\bar{x})^{2}}{n}<\sigma^{2}=\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{n} S2=n∑i=1n​(Xi​−xˉ)2​<σ2=n∑i=1n​(Xi​−μ)2​

所以直观来说需要调节S2S^{2}S2中的分母的大小(调小)。

2 方差的无偏估计

无偏估计

当我们用样本统计量来估计总体参数时,如果估计量的数学期望等于被估计参数的真实值,我们该估计量为被估计参数的无偏估计,即具有无偏性,是一种用于评价估计量优良性的准则。

而在这里我们就是希望:

E(S2)=σ2E(S^{2})=\sigma^{2} E(S2)=σ2

假设总体有10个数据,然后我们抽取5个数据来计算方差S12S_{1}^{2}S12​,然后重复这个步骤,最终得到S12,S22,⋯,S2522S_{1}^{2},S_{2}^{2},\cdots,S_{252}^{2}S12​,S22​,⋯,S2522​,然后我们希望:

E(Si2)=S12+S22+⋯+S2522252=σ2E(S_{i}^{2})=\frac{S_{1}^{2}+S_{2}^{2}+\cdots+S_{252}^{2}}{252}=\sigma^{2} E(Si2​)=252S12​+S22​+⋯+S2522​​=σ2

即用样本的方差去估计真实的总体方差

公式推导

E(S2)=E(∑i=1n(Xi−xˉ)2n−1)=1n−1E(∑i=1n(Xi−xˉ)2)=1n−1E(∑i=1n((Xi−μ)+(μ−xˉ))2)=1n−1E(∑i=1n((Xi−μ)2+2(Xi−μ)(μ−xˉ)+(μ−xˉ)2))\begin{aligned} E(S^{2}) &=E\left(\frac{\sum_{i=1}^{n}(X_{i}-\bar{x})^{2}}{n-1}\right)\\ &=\frac{1}{n-1}E\left(\sum_{i=1}^{n}(X_{i}-\bar{x})^{2}\right)\\ &=\frac{1}{n-1}E\left(\sum_{i=1}^{n}((X_{i}-\mu)+(\mu-\bar{x}))^{2}\right)\\ &=\frac{1}{n-1}E\left(\sum_{i=1}^{n}\left((X_{i}-\mu)^{2}+2(X_{i}-\mu)(\mu-\bar{x})+(\mu-\bar{x})^{2}\right)\right)\\ \end{aligned} E(S2)​=E(n−1∑i=1n​(Xi​−xˉ)2​)=n−11​E(i=1∑n​(Xi​−xˉ)2)=n−11​E(i=1∑n​((Xi​−μ)+(μ−xˉ))2)=n−11​E(i=1∑n​((Xi​−μ)2+2(Xi​−μ)(μ−xˉ)+(μ−xˉ)2))​

1)其中上式的第一项可以化简为:

σ2=∑i=1n(Xi−μ)2n→nσ2=∑i=1n(Xi−μ)2\sigma^{2}=\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{n}\rightarrow n\sigma^{2}=\sum_{i=1}^{n}(X_{i}-\mu)^{2} σ2=n∑i=1n​(Xi​−μ)2​→nσ2=i=1∑n​(Xi​−μ)2

由于nσ2n\sigma^{2}nσ2为常数,则:

1n−1E(∑i=1n(Xi−μ)2)=1n−1E(nσ2)=nn−1σ2\frac{1}{n-1}E\left(\sum_{i=1}^{n}(X_{i}-\mu)^{2}\right)=\frac{1}{n-1}E(n\sigma^{2})=\frac{n}{n-1}\sigma^{2} n−11​E(i=1∑n​(Xi​−μ)2)=n−11​E(nσ2)=n−1n​σ2

2)前式第二项可以化简为:

1n−1E(∑i=1n2(Xi−μ)(μ−xˉ))=2n−1E((μ−xˉ)(∑i=1n(Xi−μ)))=2n−1E((μ−xˉ)(∑i=1nXi−nμ))=2n−1E((μ−xˉ)(nxˉ−nμ))=−2nn−1E((μ−xˉ)2)\begin{aligned} &\ \ \ \ \ \frac{1}{n-1}E\left(\sum_{i=1}^{n}2(X_{i}-\mu)(\mu-\bar{x})\right)\\ &=\frac{2}{n-1}E\left((\mu-\bar{x})\left(\sum_{i=1}^{n}(X_{i}-\mu)\right)\right)\\ &=\frac{2}{n-1}E\left((\mu-\bar{x})\left(\sum_{i=1}^{n}X_{i}-n\mu\right)\right)\\ &=\frac{2}{n-1}E\left((\mu-\bar{x})\left(n\bar{x}-n\mu\right)\right)\\ &=-\frac{2n}{n-1}E\left((\mu-\bar{x})^{2}\right)\\ \end{aligned} ​n−11​E(i=1∑n​2(Xi​−μ)(μ−xˉ))=n−12​E((μ−xˉ)(i=1∑n​(Xi​−μ)))=n−12​E((μ−xˉ)(i=1∑n​Xi​−nμ))=n−12​E((μ−xˉ)(nxˉ−nμ))=−n−12n​E((μ−xˉ)2)​

3)第三项可以化简为:

1n−1E(∑i=1n(μ−xˉ)2)=nn−1E((μ−xˉ)2)\begin{aligned} &\ \ \ \ \ \frac{1}{n-1}E\left(\sum_{i=1}^{n}(\mu-\bar{x})^{2}\right)\\ &=\frac{n}{n-1}E\left((\mu-\bar{x})^{2}\right)\\ \end{aligned} ​n−11​E(i=1∑n​(μ−xˉ)2)=n−1n​E((μ−xˉ)2)​

4)合并第二项和第三项得:

−nn−1E((μ−xˉ)2)-\frac{n}{n-1}E\left((\mu-\bar{x})^{2}\right)\\ −n−1n​E((μ−xˉ)2)

E((μ−xˉ)2)=E((1n∑i=1nxi−1nnμ)2)=1n2E((∑i=1nxi−nμ)2)=1n2E((∑i=1nxi−E(∑i=1nxi))2)\begin{aligned} &\ \ \ \ \ E\left((\mu-\bar{x})^{2}\right)\\ &=E\left(\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}-\frac{1}{n}n\mu\right)^{2}\right)\\ &=\frac{1}{n^{2}}E\left(\left(\sum_{i=1}^{n}x_{i}-n\mu\right)^{2}\right)\\ &=\frac{1}{n^{2}}E\left(\left(\sum_{i=1}^{n}x_{i}-E\left(\sum_{i=1}^{n}x_{i}\right)\right)^{2}\right)\\ \end{aligned} ​E((μ−xˉ)2)=E⎝⎛​(n1​i=1∑n​xi​−n1​nμ)2⎠⎞​=n21​E⎝⎛​(i=1∑n​xi​−nμ)2⎠⎞​=n21​E⎝⎛​(i=1∑n​xi​−E(i=1∑n​xi​))2⎠⎞​​

此时将∑i=1nxi\sum_{i=1}^{n}x_{i}∑i=1n​xi​看作变量,则:

E((∑i=1nxi−E(∑i=1nxi))2)=var(∑i=1nxi)E\left(\left(\sum_{i=1}^{n}x_{i}-E\left(\sum_{i=1}^{n}x_{i}\right)\right)^{2}\right)=var\left(\sum_{i=1}^{n}x_{i}\right) E⎝⎛​(i=1∑n​xi​−E(i=1∑n​xi​))2⎠⎞​=var(i=1∑n​xi​)

当xix_{i}xi​之间是相互独立的时候:

var(∑i=1nxi)=∑i=1nvar(xi)var\left(\sum_{i=1}^{n}x_{i}\right)=\sum_{i=1}^{n}var\left(x_{i}\right) var(i=1∑n​xi​)=i=1∑n​var(xi​)

所以:

E((∑i=1nxi−E(∑i=1nxi))2)=∑i=1nvar(xi)=∑i=1nσ2E\left(\left(\sum_{i=1}^{n}x_{i}-E\left(\sum_{i=1}^{n}x_{i}\right)\right)^{2}\right)=\sum_{i=1}^{n}var\left(x_{i}\right)=\sum_{i=1}^{n}\sigma^{2} E⎝⎛​(i=1∑n​xi​−E(i=1∑n​xi​))2⎠⎞​=i=1∑n​var(xi​)=i=1∑n​σ2

所以:

E((μ−xˉ)2)=1n2E((∑i=1nxi−E(∑i=1nxi))2)=1n2∑i=1nσ2=1nσ2\begin{aligned} &\ \ \ \ \ E\left((\mu-\bar{x})^{2}\right)\\ &=\frac{1}{n^{2}}E\left(\left(\sum_{i=1}^{n}x_{i}-E\left(\sum_{i=1}^{n}x_{i}\right)\right)^{2}\right)\\ &=\frac{1}{n^{2}}\sum_{i=1}^{n}\sigma^{2}\\ &=\frac{1}{n}\sigma^{2}\\ \end{aligned} ​E((μ−xˉ)2)=n21​E⎝⎛​(i=1∑n​xi​−E(i=1∑n​xi​))2⎠⎞​=n21​i=1∑n​σ2=n1​σ2​

所以:

−1n−1E((μ−xˉ)2)=−nn−11nσ2=−1n−1σ2-\frac{1}{n-1}E\left((\mu-\bar{x})^{2}\right)=-\frac{n}{n-1}\frac{1}{n}\sigma^{2}=-\frac{1}{n-1}\sigma^{2} −n−11​E((μ−xˉ)2)=−n−1n​n1​σ2=−n−11​σ2

5)所以原式得:

E(S2)=nn−1σ2−1n−1σ2=σ2\begin{aligned} E(S^{2}) &=\frac{n}{n-1}\sigma^{2}-\frac{1}{n-1}\sigma^{2}\\ &=\sigma^{2} \end{aligned} E(S2)​=n−1n​σ2−n−11​σ2=σ2​

由此证毕。

3 从自由度角度理解样本方差为什么除以n−1n-1n−1?

现在从自由度的角度解释为何样本方差为什么除n−1n-1n−1。首先明确自由度的概念:自由度(degree of freedom,df)指的是计算某一统计量时,取值不受限制的变量个数,比如取三个变量x,y,zx,y,zx,y,z,然后计算平均值为x+y+z3\frac{x+y+z}{3}3x+y+z​,则此时自由度为3个。但是给定约束x+y+z=10x+y+z=10x+y+z=10之后,假设x,yx,yx,y为自由变量,则此时zzz不再是自由变量,平均值的自由度降为2个。

应用在样本方差的公式中:

S2=∑i=1n(Xi−xˉ)2nS^{2}=\frac{\sum_{i=1}^{n}(X_{i}-\bar{x})^{2}}{n} S2=n∑i=1n​(Xi​−xˉ)2​

假设抽取三个数据,其中xˉ=x1+x2+x33\bar{x}=\frac{x_{1}+x_{2}+x_{3}}{3}xˉ=3x1​+x2​+x3​​,则计算方差的公式的分母(x1−xˉ)2+(x2−xˉ)2+(x3−xˉ)2(x_{1}-\bar{x})^{2}+(x_{2}-\bar{x})^{2}+(x_{3}-\bar{x})^{2}(x1​−xˉ)2+(x2​−xˉ)2+(x3​−xˉ)2的自由度不再是3个,而应该是2个,应为当给定x1,x2x_{1},x_{2}x1​,x2​或者其中两项时,(x3−xˉ)2(x_{3}-\bar{x})^{2}(x3​−xˉ)2已经确定了。

值得注意的是,这里样本方差分母上的自由度不再是变量的自由度,而是以(xi−xˉ)2(x_{i}-\bar{x})^{2}(xi​−xˉ)2的自由度,否则的话,变量的自由度依旧为3不变!

所以当样本量为nnn的时候,计算样本方差需要除以自由度n−1n-1n−1。

参考资料:

样本方差为什么要除以n-1

样本方差分母为什么是n-1\自由度\无偏估计量\公式推导

如果觉得《样本方差分母为什么是n-1?——无偏估计》对你有帮助,请点赞、收藏,并留下你的观点哦!

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。